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The Action Functional in Non-Commutative Geometry 
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Abstract. We establish the equality between the restriction of the Adler-Manin- 
Wodzicki residue or non-commutative residue to pseudodifferential operators 
of order - n on an n-dimensional compact manifold M, with the trace which 
J. Dixmier constructed on the Macaev ideal. We then use the latter trace to 
recover the Yang Mills interaction in the context of non-commutative 
differential geometry. 

Introduction 

The non-commutative residue was discovered in the special case of one 
dimensional symbols by Adler [1] and Manin [8] in the context of completely 
integrable systems. In a quite remarkable work [13], Wodzicki proved that it 
could still be defined in arbitrary dimension and gave the only non-trivial trace, 
noted Res, for the algebra of pseudodifferential operators of arbitrary order. Given 
such an operator P on the manifold M, ResP is the coefficient of Logt  in the 
asymptotic expansion of Trace(P e-t~), where A is a Laplacian. Equivalently it is 
the residue at s = 0  of the ~ function ~(s)=Trace(PA-S). It is not the usual 
regutarisation ~(0) of the trace, and it vanishes on any P of order strictly less than 
- d i m M ,  and on any differential operator. In general this trace: Res, has no 
positivity property, i.e. one does not have Res(P*P)> O. However its restriction to 
operators of order - n ,  n = dim M is positive. This restriction of Res to pseudodif- 
ferential operators of order - n was discovered and studied by Guillemin [14]. 
Even though it is easier to handle than the general residue, it will be of great help 
for our purpose which is to show how conformal geometry fits with [3], the case of 
Riemannian geometry being treated in [5]. 

Our first result is the equality between Res and a trace on the dual Macaev 
ideal, introduced by Dixmier in [6] in order to show that the von Neumann 
algebra L~(fff) of all bounded operators in Hilbert space possessed non-trivial 
tracial weights. I am grateful to J. Dixmier for explaining his result to me and to D. 
Voiculescu for helpful conversations on the subject of Macaev ideals. Thus we 
recall that, given a Hilbert space fig, the Macaev ideal 5¢'°(fff) is the ideal of 
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compact operators T, whose characteristic values satisfy: [-7] 

~ ¼ #n(T) < ~ -  

It contains all the Schatten classes ~ P ( ~ )  for finite p, and the dual ideal, which we 
denote £ ~  + consists of all compact operators T, whose characteristic values satisfy: 

1 N 

Gifted with the obvious norm it is a non-separable Banach space containing 
strictly the ideal ~ as well as the closure of finite rank operators (thus ~ 1 is not 
norm dense in £pa + for the natural norm of the latter). 

Now in [-6], J. Dixmier showed that for any mean co on the amenable group of 
upper triangular two by two matrices, one gets a trace on ~ i + ,  given by the 
formula: 1 s 

Try(T)= lira ~ ~ 2,(T) 

when T is a positive operator, T¢ ~ 1 +, with eigenvalues 2,(T) in decreasing order, 
and lim~ is the linear form on bounded sequences defined in [-6] using co. 

We shall prove in Sect. I that when T is pseudodifferential of order - dim(M), 
the value of Tr,o(T) does not depend upon co and is equal to Res(T). In Sect. 2 we 
shall apply the above result to show how one can deduce ordinary differential 
forms and the natural conformal invariant norm on them from the quantized 
forms which we introduced in [-3]. The key point is that we do not need to take a 
"classical limit" to achieve this goal but only to use the Dixmier trace 
appropriately. In particular we obtain a simple formula for the conformal 
structure in terms of the operator F, F 2 = 1, given by the polar decomposition of 
the Dirac operator. 

In Sects. 3 and 4 after discussing the analogue of the Yang Mills action in the 
context of non-commutative differential geometry and showing, as expected, that 4 
is the critical dimension, we exploit the above construction to show that if d = 4 the 
leading divergency of the action is the usual local Yang Mills action. The latter 
result was announced on several occasions. 

1. The Main Equality 

Theorem 1. Let M be a compact n-dimensional manifold, E a complex vector bundle 
on M,  and P a pseudodifferential operator of order - n acting on sections of E. Then 
the corresponding operator P in oct ~ = L2(M, E) belongs to the Macaev ideal £pl +(9~) 
and one has: t 

Trac%(P) = n Res (P) 

for  any invariant mean co. 

Note first that both ~ 1  +(~)  and Trac% are invariant under similarities T. T -  a 
with T and T -  a bounded, so that the choice of inner product in the space of L 2 
sections of E is irrelevant. 
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Proof Since ~ ~ + (o~) contains La 1(o~), and any element of the latter is in the kernel 
of Tro~, it follows that we can neglect smoothing operators and we just need to 
prove the statements locally. Thus to show that P e ~ 1  +(~t ~) we may assume that 
M is the standard n torus T" and E the trivial line bundle. Then P = T(1 + A) -"/2, 
where T is bounded and A is the Laplacian of the (flat) torus. Thus as &ol + is an 
ideal it is enough to check that (1 +A)-"/2 e 5e ~+, which is obvious. In fact the 
characteristic values of(1 + A) -"/2 are the (1 + F) -"/2, where the rs are the lengths 

n 1 N 
of elements in the lattice F---7/, . Thus we see that the limit o f - -  3-" k s when N 

• • Lo g N  "i" goes to o% does exist for this operator so that, for any (o: 

1 do-= 1- 2re -~-- F . Trace,o((l + A)-"/2) = n s J-1 n 

Let us now prove the main equality. We may assume that M is the standard 
n-sphere S n. Since Trac% is positive and vanishes on ~e*(o~f) it defines a positive 
linear form on symbols of order - n ,  because it only depends upon the principal 
symbol a_,(P) for P of order - n. Since a positive distribution is a measure, we get 
a measure on the unit sphere cotangent bundle of S". But as Tro is a trace, the latter 
measure is invariant under the action of any isometry of S", and hence is 
proportional to the volume form on (T'S")1 = {(x, 4) ~ T'S"; II ~ II = 1 }. By the above 

computation the constant of proportionality is ~(2zc)-", 
A 

thus: 

Trac%(p)= l (2 rc )  -" ~ cr_.(P)dv 
(T*S"h 

for any P of order - n and any o~. As the right-hand side is the formula for 1_ Res (P), 
we get the conclusion. []  n 

Corollary 2. All the traces Tro agree on pseudodifferentiaI operators of order 
- d i m M ,  on a manifold M. 

1 N 
One can then conclude that suitable averages of the sequence ~ ~ ks(P) do 
converge, when N ~ o ~ ,  to this common value. 

2. Conforma| Geometry 

Let M be a compact Riemannian manifold of dimension n, and A 1 = Coo(M, T 'M)  
be the space of smooth 1-forms on M. There is a natural norm on A 1 which 
depends only upon the conformal structure of M. If d imM = 2, it is the ordinary 
Dirichlet integral: ~ [[~o [[ 2 dv = ~ e) A * co. If dim M = n, it is the L n norm, given by the 
(n th r o o t  of) following integral: 

(ll~oll)"= ~ Itco(x)ll"d"x. 

In [3] we introduced (assuming that M is Spin c) the quantized differential 
forms on M, obtained as operators of the form ~ adb; a, b ~ C°°(M), in the Hilbert 
space o~ o fL  2 spinors on M. Here db is given by the commutator  i[F, b-l, where the 
operator F, F 2 = l, is the sign D IDI - 1 of the Dirac operator. (We can ignore the 
non-invertibility of D, since it only modifies F by a finite rank operator.) 
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The next result shows how to pass from quantized 1-forms to ordinary forms, 
not by a classical limit, but by a direct application of the Dixmier trace. 

Theorem 3. Let M be a Spin ~ Riemannian manifold of dimension n > l ,  
J f  =LZ(M,S) the Hilbert space of L 2 spinors, F=DIDI - s  the sign of the Dirac 
operator. Let d=C°~(M)  be the algebra of smooth functions on M and 
f21 ={Za[F,b]; a, b e d }  be the d-bimodule of quantized forms of degree 1. 

1) For any eel2 s one has I.l"e~es+(~). 
2) There exists a unique bimodule linear map 0 s c ~A s such that 

c(i[F, a])= da ga~ C°°(M). This map is surjective and the image of the self adjoint 
elements of f2 s are the real forms. 

3) For any ~ = ~* ~ 01 one has Trace,o(l~l") =,t .  ~ II c(~)ll" with 

Proof i. By construction e is a pseudodifferential operator of order - 1, so that [e[" 
is also a pseudodifferential operator and is of order - n. The conclusion follows 
from Theorem 1. 

2. For x e M let C~ = Cliff¢( T* M) be the complexified Clifford algebra of the 
cotangent space T~*M of M at x. One has Cx = End(S~), where S is the Spinor 
bundle. For each 4e T*M we let ~(4)~C~ be the corresponding 7 matrix, 
~(4) = ~(4)*, ~(4) 2= II 4 II 2, and we extend 7 to a linear map of T*¢(M) to Cx. Given 
aEd=C~°(M),  the symbol of order - i  of IF, a] is the Poisson bracket {a,a}, 
where o-(x, ~)= ~(~)/[1 ~ I{, and thus its restriction to the unit sphere is the transverse 
part O(x, ~) = 7(da-  < da, ( >  4) of ~(da). It is a homogeneous function of degree - 1 
on T*M with values in C~. Now provided n>l ,  a vector q e T *  is uniquely 
determined by the transverse part 4 ~ r / -  < r/, ~ > 4, as a function of ~ e S*, and this 
still holds for t/E T*¢. Thus the map c exists and is characterized by the equality: 

a_ x(a) (x, ~) = 7(c(~) (x ) -  < c(a) (x), ~ > 4) V(x, ~) s S*M. 

The image ofF. ai [F, b] ~ f2 ~ is Z adb ~ A s so the surjectivity of c is dear. The image 
of ai[F, b] +(ai[F, b])* is adb+(db*)a* which is a real form, so 2. follows. 

3. The absolute value of 7(q) for q ~ T*(M) (but not its complexification) is 
II~ll 1, where 1 is the unit of C~. Thus by Theorem 1 we have: 

(2n) -" 
Trace,o(}c~})")- ~ IIc~ - <~x,~>41l" trace(1)d"xd"-14. 

n S * M  

Here trace(l)= dim(Sx)=2 "/2. Thus we just need to show that for any q ~ "  one 
has ~ II r / -  < q, ¢ > ~ Ii"(d"- 1 ¢) = 2-"/2 2, [I t/II". By homogeneity and invariance 

S n -  1 

under rotations we are reduced to the computation of an integral, which is 
obviously > 0 for n >  1. [] 

As an immediate corollary of the theorem we see that the Fredholm module 
(~/f, F) allows us to recover both the bimodule of 1-forms A t with the ordinary 
differentiation: s¢ d ,  A s (given by a~Class  of i[F, a]), and also the conformal 
structure of M since the L" norm on A s uniquely determines it. 
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Another equivalent way to formulate the result is to consider for each n the 
ideal ~ " + ,  n m root of £pl +, in Le(Yg), 

~q~"+={T~Cf(~),Tcompact, S u P ( L o ~ P j ( T ) ~ ) < o o  }, 

and the ideal ~ +  which is the norm closure, for the norm o f ~  "+, of operators of 
finite rank (cf. [7]). Then on an n-dimensional manifold M as above the quantized 
1-forms are all in ~ "  +, and the ordinary forms are obtained by moding out ~ +  
C ~ "  +. The ordinary differential is obtained in the same way from the quantized 
differential a~i[F, a] ~ f21. 

For forms of arbitrary degree there are two more points which we have to 
clarify before we can handle the Yang Mills action. Given an n-dimensional 
Euclidean space E, we let HE be the homomorphism of the tensor algebra T(E) in 
C°~(SE, Cliff(E)), (the algebra of smooth maps from the unit sphere SE={~ ~E, 
(1¢[E =1} to the Clifford algebra of E) obtained from the linear map ~ 0 0 1 ) ,  
Q(*t) (4) = ~(~-  < ~, ~ > 4) v ¢  ~ sE. 

We let J(E) be the kernel of / /g .  

Lemma 4. With the notations of Theorem 3, let O k be the the d-bimodule of 
quantized forms of degree k. 

1. For l<_k<n one has ~ - ~ k c ~ n / k + ( ~ )  and the direct sum + O  k, with 
n 0 

~,~k ~ ~ n [ k  + f.5~'~k is a tWO sided ideal in the algebra 0 ok= Q*" 
0 

2. The principal symbol map gives a canonical isomorphism c of graded algebras, 

.from ~2"/f2" to the graded algebra of smooth sections of the vector bundle + ER, 
where E k is obtained from the cotangent bundle by applying the functor: o 

E ~ Tk(E)/J(E)c~ Tk(E) = fk(E). 

Proof 1. Any element of O k is a pseudodifferential operator P of order - k ;  thus 
[P[ "jk is of order - n and Theorem 1 applies. The Holder inequality also holds for 

the ideals ~?v+ and shows that ~ep~+ × &,ev~+ C~ep~+, 1 _ 1 + 1_ and also that 
P3 Pt P2 

~ ' +  x 5e p~+ C ~  ~+, ~P'+ x &o~+ CLf~+ (cf. [7]). 
2. First, by Theorem 1, an element P of f2 k belongs to ~/k+ if and only if its 

principal symbol vanishes. (If it does then the operator is of order < - k and hence 
even belongs to ~,/k; if it does not then the Dixmier trace of IPI "/k does not vanish.) 
The quotient ok/o k is a commutative bimodule over ~ '  = C~(M), and since any 
element of t2 k is a finite sum of products of k elements of f2 ~, the symbols a-k(P), 
P ~ O k are exactly the smooth sections of fk(T*M). [] 

For our purpose we only need to determine f~ and f2. For n > 1 we have seen 
that f~(E)=E. For n > 2  let us show that J(E)nT2(E) = {0}, i.e. that the map HE is 
injective on tensors of rank 2. Since J(E) is invariant under the action of the 
orthogonal group O(E), it is enough to check that/-/~ is non-zero on the three 
irreducible subspaces of TZ(E), namely a) antisymmetric tensors b) symmetric 
traceless tensors c) the inner product (viewed as a symmetric tensor). Since n > 2 we 
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can take th, t/2 ~ E linearly independent, and ~, [I ~ II = 1, orthogonal to both, to get 
that 1-IE( q x ® q2 - q2 ® q x) • 0. The image b y / 7  E of the symmetric tensor t/x ® t/2 
+tl2®tlx(q,~E) is the scalar valued function on SE:HE(qX®~/2+t/2®q0(~) 
---- (t/a, t/2> -- Qla, ~) (q2, ~). This is enough to show that H e is non-zero and hence 
injective on tensors of type a) b) or c). Thus we get: 

Lemma 5. I f  d imE>2 ,  f2(E)= TZ(E). 

The next point that we need to clarify is that even though f = O*/O* is a graded 
algebra of tensors on the manifold M, and c is a homomorphism from the graded 
algebra O* to O*/Q*, we do not have a natural differential in f The point is that the 
ideal O~ is not in general stable under the map: 

O~ E O k - ' * d ~  = i ( F ~ t  - -  ( - -  1)k ~tF) 6 0 k + 1. 

However since d 2~  0, this is easily cured: 

n 

Lemma 6. 1. The direct sum O~o= @Oko with O k o = { ~ O k ,  d ~ O ~  +1} is a 
o 

graded differential two sided ideal in the graded differential algebra 0".  
2. The map ~, ~(~) = (c(~), ¢(d~)) is a linear injection of the quotient Ok/Oko in the 

space of sections of the bundle fk(T*)@fk+ l(T*). 

Proof 1. We just have to check that it is a two sided ideal, which follows from 
Lemma 4 1) and the equality d(~l ~2) = (d ~1)~2 + ( -  1)e1~1 d~2. 

2. Apply Lemma 4 2). []  

Assuming n > 2 let us determine the image ~(O1), i.e. the pairs (c(~), c(d~)) when 
varies in O x. 

Lemma 7. For n > 2, ~(O x) consists of  all smooth tensors (o~, fl), where co is of rank 1, 
fl of  rank 2 and one has: 

A fl = d~o , 

where A is the projection on antisymmetric tensors of  rank 2. 

Proof It is enough to check the equation for the pair co= c(~), f l= c(d~) with 
~=adb; a,b~C°°(M). Then by Theorem 3 2), c(~) is the l-form adb and since 
d~ = da db, we see that Aft is the antisymmetric tensor ½(da®db-  dbQda), thus the 
equality Aft = do. It remains to show that ~(~21) contains all the smooth symmetric 
tensors of rank 2. Now with ~ = adb as above and x ~ C®(M) we have c(x~ - ~x) = 0 
and c(d(x~-~x) )= c((dx)~ + ~(dx)). Thus ~(x~-  ~x) is the smooth symmetric two 
tensor (dx)~ + ct(dx). As every smooth symmetric two tensor is a finite sum of such 
terms we get the conclusion. []  

3. The Action Functional in Non-Commutative Differential Geometry 

We begin this section by a very simple example, the case of the circle S 1, where we 
show that using our quantized differential forms, the quantized flat connections 
correspond exactly to the Grassmannian which plays a fundamental role in the 
theory of totally integrable systems [9]. 
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Thus we let d = C~(S 1) be the algebra of smooth functions on S 1 and let (~vf, F) 
be the Fredholm module over d given by ~/f = L2(S t) and F = 2 P -  1, where P is 
the Toeplitz projection. In other words the operator F multiplies the n th Fourier 
component of ~ e L2(S 1) by 1 if n > 0 and - 1 otherwise. 

Lemma 8. The space f21={~ a[F,b]; a,b~ ~¢} of  1-forms is dense in the space 
~ 2 ( ~ )  of Hilbert Schmidt operators. 

Proof. Let u ~ d be the function u(O) = exp i O, 0 ~ S 1. The operator ½u- ~ IF, u] is the 
rank one projection on the subspace ~eo, where (e,),~z is the canonical basis of 
Jog = Lz(S1), e,(O) = exp(inO), VO ~ S t. Thus the quantized forms ~o,,,, 
= u"(½u-I[F, u]) u" form the natural orthonormal basis of ~ 2 ( ~ ) .  [] 

We cannot entirely justify the cboice of the Hilbert Schmidt norm in the above 
lemma, since it happens in dimension 1, that 1-forms are traceable. (As we saw 
above, by Theorem 1, it is not true that 1-forms belong to .~n for an n-dimensional 
manifold, n >  1.) The only sensible justification is that the definition of the 
character of the Fredholm module only requires that 1-forms be of Hilbert 
Schmidt class, and is continuous in this norm (cf. [3]). Next consider the trivial line 
bundle, with fiber IE, on S t, or equivalently the finite projective module 8 = C~(S ~ ) 
over ~¢. Then as in [3, Definition 18, p. 110] a connection 17 on ~ is given by a 
linear map V : g ~ ® ~ c f 2 1  such that 

v(~ . x) = (17~)x + ¢ ® d x ,  

where here dx = i[F, x], according to our definition of the quantized differential. 
We endow the above line bundle with its obvious metric, i.e. we view g as a C* 
module over ~¢, with (3, q) (0)= ~( O)q( O), ¥0 ~ S 1, V ¢, rl ~ g. Obviously a connec- 
tion on g is specified by the 1-form,  = V1, and the latter is an arbitrary element of 
f2 t. Moreover the connection associated to ~ is compatible with the metric (cf. [4]), 
(i.e. such that (17~,t/)+ (~, Vt l )=d(~ ,q )  V~,q~g) iff ~ + ~ * = 0 .  

We thus get the elementary but significant result: 

Theorem 9. The map 17~½(1 +F)-½i17(1) is a one-to-one bijection from flat 
compatible and square integrable connections on g with the restricted Grassmannian. 
It is equivariant with respect to the natural action of C°~(S t, U(1)). 

Proof First V is characterized by ~ = V(1) and is compatible iffc~* = - ~, and square 
integrable iff ~ ~ ~ 2 ;  thus by Lemma 8, without the flatness condition the allowed 
~'s are the skew adjoint elements of ~2(J~40. Now (cf. [9]) the restricted 
Grassmannian consists exactly of the idempotents Q, Q = Q* such that Q - P ~ Le2. 
Thus if we set Q = 3(1 + F ) -  ½i~, we just need to check that Q2 = Q iff v, is fiat, i.e. iff 
one has i(F~ + ~F)+ ~z = O, which is obvious. The unitary group a# = C ®(S 1, U(1)) 
of End~(g) acts by gauge transformations on compatible connections (cf. [4]) with 
y,(V)=uVu -1 for ue°g, or equivalently y,(a)=ui[F,u-1]+u~u -1. Thus the 
corresponding Q~ is replaced by uQ,u-1. [] 

A similar statement holds for the bundle with fiber ~E", with q/replaced by 
C°~(S 1, U(n)). 

In relation with [2] and [12] we also want to point out that on the space of all 
compatible connections (i.e. all ~=-c~*  in 5¢2(ovf)) one has a natural Chern- 
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Simons action given by 

I(~) = ~ (~d~ + _~ ~3), 

where the integral is the trace and as usual d~ is the graded commutator 
do~ = i(Fo~ + o~F). 

But let us now pass to the analogue of the Yang Mills action. The set up is, as in 
[3] and as above, fixed by a .  algebra d and a Fredholm module ( ~ ,  F) over o4 
which is p-summable, i.e. IF, x] e £aP(a:g) for some finite p, which as explained in 
[3] has to do with dimension. We are also given the analogue of a Hermitian 
bundle, i.e. a finite projective module g over d ,  with an d valued inner product 
(of. [4]). This latter data can be ignored for a first reading and specialized to g = ag 
with (a, b) = a*b e ~/. 

Then using the differential algebra of quantized differential forms, 
O k = {~ a°dal.. ,  dak; a ~  ~¢, da = i[F, a]} (cf. [3]) we get the notions of connection, 
compatible connection, curvature relative to g. For  g = ~ '  a connection is just an 
element ~ of g21, it is compatible iff 5*=-c~  and its curvature is 0 = d ~ + ~  2 
=i(F~+~F)+~ 2. (cf. [3, p. 110] and [4]). Using [3, Lemma 1, p. 56], we get: 

Theorem 10. 1. The action I+(~)= ll0[l~s is finite if p<4. 
2. When p < 4, the action I + is a quartic positive function of ~ invariant under the 

action of the gauge group of second kind 

0//= {u e End(g); uu* = u*u = 1 }. 

Proof For the sake of clarity we take 8 = ag. By construction 0 = d0~ + 5 2 ~ ~r~2, and 
by [3, Lemma 1, p. 56] one has Ok c ~p/k SO that f22C £pp/z. Thus 0 is Hilbert 
Schmidt when p/2 < 2, i.e. when p < 4. If we replace ~ by 7,(~) = udu- 1 + u~u- 1, the 
curvature 0 is replaced by uOu-1 so that the statement 2. is obvious. [] 

It is well known that the dimension n = 4 is the relevant dimension for the 
classical Yang Mills action since it is only for n = 4 that it is conformally invariant, 
but for the action I + the situation is slightly different: 1. The action I + is finite only 
if the degree of summability p is < 4, 2. For a 4-dimensional manifold M, the 
Fredholm module ( ~ ,  F) on C°°(M) given by Theorem 3 is p summable for any 
p = 4 + e ,  e > 0  but not for p=4 .  Thus in this case the action I+ is divergent. 
However by Lemma 4 one has 02C£# 2+ so that the divergence of 
I] 0 []~s = Trace(0*0) is only logarithmic (0"0~ £a 1 +) and the principal term (i.e. the 
coefficient of LogK in terms of a cut off K) is given by the Dixmier trace 
Trac%(0*0). In the next section we shall fully identify this leading term in I + with 
the classical Yang Mills action. 

4. The Leading Term of the Action in 4 Dimensions 

Let M be a 4 dimensional compact smooth Riemannian manifold. We assume that 
M is Spin c and let ( ~ ,  F) be the Fredholm module over a¢ -- Coo(M), with a/t ° the 
Hilbert space of L 2 spinors and F = DID]- 1, where D is the Dirac operator. We let 
(g2*, d) be the graded differential algebra of quantized forms, and define as in Sect. 3 
the notion of compatible connection for a Hermitian vector bundle E over M. This 
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involves the module ~ = C°~(M, E) (of sections of E) over d and the d -va lued  
inner product given by the metric of E. By construction (cf. I-3]) the curvature 0 is 
an element of Hom~¢(g, ~®~f22), but since here 0 2 acts in the Hilbert space ~f, we 
can view 0 as an operator in the Hilbert space 8 ® ~ J f .  The inner product of the 
latter space is given by (cf. [4]) (~®r/, ~ '®r / ' )=( (~ ,~ ' ) r / , r / ' )  for ~ ,~ ' e~  and 
i/, ~/'e ~ .  In the simple case where 8 is the free module d q (i.e. E is the trivial 
bundle with fiber tE~), the connection is given by a matrix 09 = cou of elements of 0 1, 
with i,j e {1,..., q} and the curvature is the operator in ovg~ given by the matrix 
do9 + 092, with (dco + co2)i k = d(coik) + ~ C%ZOjk. In general if 0 is the curvature, 
0=  V2eHom(g,8®~,f2z), of the connection 17, there exists elements ¢~ of ~, 
i e{ l  .. . . .  q} and Oije~'~ 2", i, j e { l , . . . , q }  such that 0(~)=2;(~i®0u)(~J,~). The 
corresponding operator in g®~ovg is then such that: 

The compatibility of the connection 17 with the metric implies that 0 is a selfadjoint 
operator in ~ ®~¢Jf: If g = ~¢q, then the connection given by co = (o9u)e Mq(f2 ~) is 
compatible iff co* = - co and the curvature 0 = do9 + (o2 is then selfadjoint since for 
eel21 one has d e * = - ( d e ) * e f 2  z. For the sake of clarity, since we are going to 
relate our notion of connection with the usual notion we shall use the term 
q-connection for the former and c-connection for the latter. 

Lemma 11. a) Every q-connection V : g ~ g ® I 2  i determines uniquely a classical 
connection V~ by composition with the bimodule map c : I21~A 1 of Theorem3: 
v~=0®c)o 17. 

b) Let 0 be the curvature of the q-connection V, then the curvature O~ of  17¢ is the 
antisymmetric part A c(O) of e(O). 

Proof a) One has c(aeb) = ac(e)b for a, b ~ J ,  e e f2 l, so (1 ®c) o 17 is a linear map of 
g = C~(M, E) to g®~¢A ~ = C~(M, E® T*) such that Vc(~a ) = ( ~ ) a  + ~®da for any 
~ g ,  ae~¢. 

b) Since the ordinary exterior product of two 1-forms is the antisymmetric part 
of their tensor product, the answer follows from Lemma 7. [] 

Corollary 12. The map 17 ~ ~ maps fiat q-connections to ordinary fiat connections 
on ~. 

Note that the flatness of the q-connection 17 means as in Theorem 9 that the 
operator F v = 1 ® F - -  iV in the Hilbert space g ® ~¢Yt ~ satisfies F 2 = 1, and hence, in 
the compatible case, yields an element of a suitable Grassmanian. Here Fv is 
defined by: Fv(~®t l )=~®Frl - - i~®co~t l ,  with V~= ~ ® c o ~ e ~ ® ~ c f 2  ~. One 
checks that the right-hand side is independent of any choice. Now by Lemma 7 we 
can associate to every q-connexion a classical tensorial data which is a bit more 
refined than a classical connexion. Indeed the bimodule I2a/f2o~o = Y~ is by 
Lemma 7 isomorphic to the space of smooth tensors C~°(M, T ~ @ T 2) which satisfy 
the equation dco=Afl, and the bimodule structure of ~ is given by: a(og, fl) 
= (aco, da ® co + aft); (co, fl) a = (coa, fla - o9 ® da). By the map (o9, fl) ~(co, fl - dco), we 
can identify ~ with the space of all smooth tensors C~(M, Ta~)S2T ~) with the 
bimodule structure given by: 

a(og, a) = (co, a) a = (aco, a~r + ½(da ® co + co ® da)) 
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= (aco, aa + da. co), where da. co is the product in the symmetric algebra. Note  in 
particular that the map (09, a)-+co is an d -b imodu le  map of ~ to A x, but that the 
subspace {(co, a ) ~ ;  a - 0 }  is not a submodule of Y. 

Lemma 13. 1. The map V-+(l®c-)o V is a surjection of the space of q-connections 
on 8 to the space Fg of maps X: g ~o~®,~ y, such that z(~a)=z(~)a+ ~®da V~ Eg, 
ae  ~¢. 

2. The map (co, a)-+co gives a surjection q of Fg on the space of classical 
connections on E, and the fibers of 0 are affine spaces over the vector space 
C°°(M, E n d E ® S 2 T  *) of smooth 2-tensors. 

Proof 1. To prove 1. one can assume, as in [3, Proposition 19], that g = ~¢", so that 
a q-connection is an element of M,(O 1) and Fg=M,(~),  thus 1. follows from 
Lemma 7. 

2. We view Coo(M, S2T *) as a submodule ~o of Y, by the map a~(0 ,  a). One has 
C®(M, E n d E ® S 2 T * ) = H o m ~ ( g , o ~ ® ~ o ) .  Thus the exact sequence of 
bimodules: 

0---~ ~0 --+ Z --+A1 --+0 

gives the desired answer. []  

Theorem 14. Let M be a 4-dimensional Spin C Riemannian compact manifold, 
J/g = L2(M, S) and F =DIDI- 1 as above, and E a hermitian vector bundle over M, 
e = COo (M, E). 

1. For every compatible q-connection V on ~, the curvature O r ~ ( g ® ~ g / g )  
belongs to ~ 2  + and the value of the Dixmier trace Trace,o(02) = I(0), is independent 
of co and defines a gauge invariant positive functional 1. 

2. The restriction of I to each (affine space) fiber of the map V ~ ~ is Gaussian 
(i. e. a quadratic form)  and one has." 

Inf I (V)= (16rc2) - 1yM(A) 
Vc=A 

where A is a classical connection and YM the classical Yang Mills action. 

In fact we shall prove more since we shall identify the Hilbert space of the 
Gaussian as L2(M, EndE®S2T*) .  

Proof 1. Follows from the inclusion O2C £¢2 + i.e. Lemma 4, 1) and Theorem 1. 
The gauge invariance (under the unitary group of End~(g)) follows from the trace 
property of Trac%. 

2. The value of I(0) depends only upon the element Z of F associated to the 
q-connection V. In order to see that and to compute I(O) we shall for simplicity 
assume that g = d " .  Then V is given by a matrix (e~j), (~ijCzO 1, with ej~= -c~* Vi, 
j s{1 , . . . ,n} .  The curvature 0 is given by the matrix (Oij), 0=de+c~ 2, i.e. 
Oij = dcqj + ~ aikakj. Since aij E 0 1, one has (deij)* = deji and 0* = Oji. Now the value 

k 

of Tr,o(02) only depends upon the image of 0 in f22/f2~, and the latter only depends 
upon the image g(e~j) of eij in O1/f2o~o, thus our assertion. Now let us write g(e,) 
= (coij, flO with Afl~j = dcoij as in Lemma 7. Then the image c(Oj) of 0 0 in f22/f2~, 
considered as a tensor of rank 2, is given by the following formula: 

c(O0 = ~j+ 2 coikco~j. 
k 
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For each/j the antisymmetric part Ac(O 0 is the i, j component of the curvature of 
the associated classical connection (cf. 11 b)). By 13 2., the symmetric part of the 
tensors/~ij is any smooth symmetric tensor tij with tji = t* Vi, j, [where (~Qt/)* 
=q*®~* for any tensors of rank 1, ~ and t/]. By Theorem 1, there exists an 0(4) 
invariant inner product o n  TZlR4=A2~.4(~S2]R4 such that, with the above 
notations: 

I(V) = Trac%(02)  = ~ Nc(Oij)II 2. 
M 

Since in this inner product A z R  4 is necessarily orthogonal to SZN 4, it follows that, 
while 1(17) obviously depends quadratically on the symmetric part of fl~j, its 
minimum over each fiber of V---, ~ is reached when the symmetric part of each 
tensor c(O 0 is set equal to 0. But then the value of I(V) is, up to a numerical factor, 
the standard Yang-Mills action. [] 
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