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From monoids to hyperstructures: in search
of an absolute arithmetic
Alain Connes and Caterina Consani

Abstract. We show that the trace formula interpretation of the explicit formulas expresses the
counting function N.q/ of the hypothetical curve C associated to the Riemann zeta function,
as an intersection number involving the scaling action on the adèle class space. Then, we
discuss the algebraic structure of the adèle class space both as a monoid and as a hyperring.
We construct an extension Rconvex of the hyperfield S of signs, which is the hyperfield analogue
of the semifield Rmax

C of tropical geometry, admitting a one parameter group of automorphisms
fixing S. Finally, we develop function theory over Spec K and we show how to recover the
field of real numbers from a purely algebraic construction, as the function theory over Spec S.
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1 Introduction

The geometry of algebraic curves underlying the structure of global fields of positive
characteristic has shown its crucial role in the process of solving several fundamen-
tal questions in number theory. Furthermore, some combinatorial formulas, such as
the equation supplying the cardinality of the set of rational points of a Grassmannian
over a finite field Fq , are known to be rational expressions keeping a meaningful and
interesting value also when q D 1. These results motivate the search for a mathemat-
ical object which is expected to be a non-trivial limit of Galois fields Fq , for q D 1.
The goal is to define an analogue, for number fields, of the geometry underlying the
arithmetic theory of the function fields. Inspired by this problem and by the pioneer-
ing work of R. Steinberg and J. Tits, C. Soulé has associated a zeta function to any
sufficiently regular counting-type function N.q/, by considering the limit

�N .s/ WD lim
q!1

Z.q; q�s/.q � 1/N.1/ s 2 R: (1.1)

Here, Z.q; q�s/ denotes the evaluation, at T D q�s , of the Hasse–Weil zeta function

Z.q; T / D exp
�X
r�1

N.qr/
T r

r

�
: (1.2)

For the consistency of the formula (1.1), one requires that the counting function N.q/
is defined for all real numbers q � 1 and not only for prime integers powers as for the
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counting function in (1.2). For many simple examples of algebraic varieties, like the
projective spaces, the functionN.q/ is known to extend unambiguously to all real pos-
itive numbers. The associated zeta function �N .s/ is easy to compute and it produces
the expected outcome. For a projective line, for example, one finds �N .s/ D

1
s.s�1/

.
Another case which is easy to handle and also carries a richer geometric structure is
provided by a Chevalley group scheme. The study of these varieties has shown that
these schemes are endowed with a basic (combinatorial) skeleton structure and, in [5],
we proved that they are varieties over F1, as defined by Soulé in [30].

To proceed further, it is natural to wonder on the existence of a suitably defined
curve C D SpecZ over F1, whose zeta function �C .s/ agrees with the complete Rie-
mann zeta function �Q.s/ D ��s=2�.s=2/�.s/ (cf. also [25] and [27]). Following the
interpretation of N.1/ given in [30], this value should coincide with the Euler char-
acteristic of the curve C . However, since C should have infinite genus, one deduces
that N.1/ D �1, in apparent contradiction with the expected positivity of N.q/, for
q > 1. This result also prevents one to use the limit definition (1.1). In [6], we have
shown how to solve these difficulties by replacing the limit definition (1.1) with an
integral formula and by computing explicitly the distribution N.q/ which fulfills the
expected positivity, for q > 1, and the divergence at q D 1.

In Section 2 of this paper, we show how to implement the trace formula understand-
ing of the explicit formulas in number-theory, to express the counting function N.q/
as an intersection number involving the scaling action of the idèle class group on the
adèle class space. This description is the natural corollary of an earlier result proved by
the first author of this paper in [4] (and motivated by [17]), showing that the Riemann–
Weil explicit formulas inherit a trace formula meaning when one develops analysis on
the noncommutative space of the adèle classes (we also refer to [9], [12] and [28] for
further work on the same topic).

In [4], as well as in the above papers, the adèle class space AK=K
� of a global

field K has been studied as a noncommutative space. Only very recently (cf. [8]),
we have been successful to associate an algebraic structure to AK=K

� using which
this space finally reveals its deeper nature of a hyperring of functions, likewise the
space-time geometry in quantum field theory which manifests itself through functional
analysis. The hyperring structure of AK=K

� has fully emerged by combining the
following two properties:

� AK=K
� is a commutative monoid, so that one may apply to this space the geom-

etry of monoids of K. Kato and A. Deitmar.

� AK=K
� is a hyperring over the Krasner hyperfield K D ¹0; 1º.

In Section 3, we describe the first structure associated to this space. In particular,
we overview several of our recent results (cf. [6]) showing that the natural monoidal
structure on the adèle class space, when combined with one of the simplest examples
of monoidal schemes i.e. the projective line P1F1 , provides a geometric framework to
understand conceptually the spectral realization of the zeros of L-functions, the func-
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tional equation and the explicit formulas. All these highly non-trivial statements ap-
pear naturally by simply computing the cohomology of a natural sheaf � of functions
on the set of rational points of the monoidal scheme P1F1 on the monoidM D AK=K

�

of adèle classes. The sheaf� is a sheaf of complex vector spaces over the geometric re-
alization of the functor associated to the projective line. It is a striking fact that despite
the apparent simplicity of the construction of P1F1 the computation of H 0.P1F1 ; �/,

already yields the graph of the Fourier transform. The cohomology H 0.P1F1 ; �/ is
given, up to a finite dimensional space, by the graph of the Fourier transform acting on
the co-invariants for the action of K� on the Bruhat–Schwartz space S.AK/. More-
over, the spectrum of the natural action of the idèle class group CK on the cohomology
H 1.P1F1 ; �/ provides the spectral realization of the zeros of Hecke L-functions.

In Section 9, we review the hyperring structure associated to the adèle class space.
In [8], we proved that the adèle class space possesses a rich additive structure which
plays an essential role to provide the correct arithmetic setup on this space and to
obtain, in positive characteristic, a canonical identification of the groupoid of prime
elements of the hyperring AK=K

� with the loop groupoid of the maximal abelian
cover of the algebraic curve underlying the arithmetic of the function field K. It is an
interesting coincidence that the first summary on hyperring theory, due to M. Krasner
(cf. [23]), appeared in the same proceeding volume together with the seminal paper
of J. Tits [32] where he introduced “le corps de caractéristique un”. The distinction
between the algebraic structure that Tits proposed as the degenerate case of Fq for
q D 1, i.e. “le corps formé du seul élément 1 D 0”, and the Krasner hyperfield
K D ¹0; 1º is simply that in K one keeps the distinction 1 ¤ 0, while recording the
degeneracy by allowing the sum 1C 1 to be maximally ambiguous.

In Section 4, we recall some of our results contained in [8] showing, for instance,
that in spite of the apparent naivety of the definition of the Krasner hyperfield K, the
classification of its finite extensions is equivalent to a deep open question in classical
projective geometry.

When K is a number field, there is a basic main question that needs to be addressed,
namely the search for a substitute, in characteristic zero, of the algebraic closure NFq
of the field of constants of a function field and the understanding of its role in the
geometric construction of the curve associated to that field. In Section 5, we show that
the hyperfield S D ¹�1; 0; 1º of signs admits an infinite hyperfield extension Rconvex

which is obtained from R by suitably altering the rule of addition. This extension has
characteristic one (i.e. x C x D x for all x 2 Rconvex) and it contains S as the smallest
sub-hyperfield. The group of automorphisms Aut.Rconvex/ is the multiplicative group
of non-zero real numbers acting on the hyperfield Rconvex by exponentiation. This
group plays the role of the cyclic group generated by the Frobenius automorphism
acting on NFp, in characteristic p > 1.

In Section 6, we develop the generalities of the study of the function theory on the
affine spectrum Spec.R/ of a hyperring R. The novelty (and subtlety) with respect to
the classical case of (commutative) rings arises from the failure in this framework, of
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the isomorphism (holding for rings)

Hom.ZŒT �; R/ ' R:

In the classical case, the above isomorphism provides one with an identification of the
elements of R with functions on Spec.R/, understood as morphisms to the affine line
D D Spec.ZŒT �/. In the context of hyperrings, we define the functions on Spec.R/ as
the elements of the set D.R/ D Hom.ZŒT �; R/. We implement the natural coproduct
structures on the Hopf algebra H D ZŒT � (corresponding to the addition: �C.T / D
T˝1C1˝T and the multiplication��.T / D T˝T ) to define operations on functions
on Spec.R/. In Sections 7 and 8, we investigate the outcoming hyperstructures on
D.K/ and D.S/. The natural morphism from D to Spec Z determines a restriction
map � W D.K/ D Spec.ZŒT �/ ! Hom.Z;K/ D Spec.Z/. Then, one sees that the
two hyperoperations of addition and multiplication on D.K/ take place fiber-wise i.e.
within each fiber ��1.p/, p 2 Spec.Z/. Theorem 7.13 asserts that, for a finite and
proper prime p, the hyperstructure on the fiber ��1.p/ coincides with the quotient
hyperring structure on the orbit-set �=Aut.�/, where � is an algebraic closure of
the field of fractions Fp.T /. Theorem 7.1 states that the fiber over the generic point
of Spec.Z/ contains the quotient hyperstructure NQ=Aut. NQ/ where NQ is the algebraic
closure of Q, although the operations involving the generic point are more subtle: cf.
Theorems 7.2 and 7.7.

We expect that a similar development will hold when the Hopf algebra ZŒT � is
replaced by the Hopf algebra of a Chevalley group.

In Section 8, we show that the hyperstructure D.S/ defines a slight refinement of
the field R of real numbers. To each element ' 2 D.S/ corresponds a real number
Re.'/ 2 Œ�1;1� given as a Dedekind cut. The map Re W Dfinite.S/ ! R is a sur-
jective homomorphism whose kernel is an ideal isomorphic to S. A slight difference
between the real numbers and the subset Dfinite.S/ of the finite elements of D.S/ only
occurs over real algebraic numbers which have three representatives given by the three
homomorphisms

ZŒT �! S; P.T / 7! lim
�!0C

signP.˛ C t�/; t 2 ¹�1; 0; 1º:

The richness and complexity of the structure of functions on hyperring spectra, even in
the simplest examples of Spec.K/ and Spec.S/, together with the construction of the
hyperfield Rconvex, are both clear indications of the existence of an interesting and yet
unexplored arithmetic theory which has just started to emerge from the basic principles
outlined in this work.

2 From the counting function to the adèle class space

In this section we show that the trace formula interpretation of the explicit formu-
las expresses the counting function N.q/, of the hypothetical curve C associated to
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the complete Riemann zeta function, as an intersection number involving the scaling
action of the idèle class group on the adèle class space.

2.1 The counting function of C D Spec Z

As explained in the introduction, it is natural to wonder on the existence of a suitably
defined “curve” C D SpecZ over F1, whose zeta function �C .s/ is the complete
Riemann zeta function �Q.s/ D ��s=2�.s=2/�.s/ (cf. also [27]). To by-pass the
difficulty inherent to the definition (1.1), when N.1/ D �1, one works with the
logarithmic derivative

@s�N .s/

�N .s/
D � lim

q!1
F.q; s/ (2.1)

where

F.q; s/ D �@s
X
r�1

N.qr/
q�rs

r
: (2.2)

Then one finds (cf. [6] Lemma 2.1), under suitable regularity conditions on N.u/, that

Lemma 2.1. With the above notations and for <e.s/ large enough, one has

lim
q!1

F.q; s/ D

Z 1
1

N.u/u�sd�u; d�u D du=u (2.3)

and

@s�N .s/

�N .s/
D �

Z 1
1

N.u/ u�sd�u: (2.4)

The integral equation (2.4) is more manageable and general than the limit for-
mula (1.1). It produces a precise description of the counting function NC .q/ D N.q/
associated to C . In fact, (2.4) shows in this case that

@s�Q.s/

�Q.s/
D �

Z 1
1

N.u/ u�sd�u: (2.5)

To determine explicitly N.u/, one uses the Euler product for �Q.s/ and when
<e.s/ > 1, one derives

�
@s�Q.s/

�Q.s/
D

1X
nD1

ƒ.n/n�s C

Z 1
1

	.u/ u�sd�u: (2.6)
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Here, ƒ.n/ is the von-Mangoldt function taking the value logp at prime powers p`

and zero otherwise. 	.u/ is the distribution defined, for any test function f , as

Z 1
1

	.u/f .u/d�u D

Z 1
1

u2f .u/ � f .1/

u2 � 1
d�uC cf .1/; c D

1

2
.log� C 
/

(2.7)

where 
 D �� 0.1/ is the Euler constant. The distribution 	.u/ is positive on .1;1/
where, by construction, it is given by 	.u/ D u2

u2�1
. Hence, we deduce that the count-

ing function N.q/ of the hypothetical curve C over F1, is the distribution defined
by the sum of 	.q/ and a discrete term given by the derivative taken in the sense of
distributions, of the function1

'.u/ D
X
n<u

nƒ.n/: (2.8)

Indeed, since d�u D du
u

, one has for any test function f ,

Z 1
1

f .u/

�
d

du
'.u/

�
d�u D

Z 1
1

f .u/

u
d'.u/ D

X
ƒ.n/f .n/:

Thus one can write (2.6) as

�
@s�Q.s/

�Q.s/
D

Z 1
1

�
d

du
'.u/C 	.u/

�
u�sd�u: (2.9)

If one compares the equations (2.9) and (2.5), one derives the following formula for
N.u/:

N.u/ D
d

du
'.u/C 	.u/: (2.10)

One can then use the explicit formulas to express '.u/ in terms of the set Z of non-
trivial zeros of the Riemann zeta function. One has the formula (cf. [20], Chapter IV,
Theorems 28 and 29) valid for u > 1 (and not a prime power)

'.u/ D
u2

2
�
X
�2Z

order.�/
u�C1

�C 1
C a.u/: (2.11)

Here, one sets

a.u/ D ArcTanh

�
1

u

�
�
�0.�1/

�.�1/
: (2.12)

1 the value at the points of discontinuity does not affect the distribution
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Notice that the sum over Z in (2.11) has to be taken in a symmetric manner to ensure
the convergence, i.e. as a limit of the partial sums over the symmetric set Zm of first
2m zeros. When one differentiates (2.11) in a formal way, the term in a.u/ gives

d

du
a.u/ D

1

1 � u2
:

Hence, at the formal level, i.e. by disregarding the principal value, one obtains

d

du
a.u/C 	.u/ D 1:

Thus, after a formal differentiation of (2.11), one deduces

N.u/ D
d

du
'.u/C 	.u/ � u �

X
�2Z

order.�/ u� C 1: (2.13)

Notice that in the above formal computations we have neglected to consider the
principal value for the distribution 	.u/. By taking this into account, we obtain the
following more precise result (for the proof we refer to [6], Theorem 2.2).

Theorem 2.2. The tempered distribution N.u/ satisfying the equation

�
@s�Q.s/

�Q.s/
D

Z 1
1

N.u/ u�sd�u

is positive on .1;1/ and on Œ1;1/ is given by

N.u/ D u �
d

du

�X
�2Z

order.�/
u�C1

�C 1

�
C 1 (2.14)

where the derivative is taken in the sense of distributions, and the value at u D 1 of
the term !.u/ D

P
�2Z order.�/u

�C1

�C1 is given by

!.1/ D
X
�2Z

order.�/
1

�C 1
D
1

2
C



2
C

log 4�

2
�
�0.�1/

�.�1/
: (2.15)

This result supplies a strong indication on the coherence of the quest for an arith-
metic theory over F1. For an irreducible, smooth and projective algebraic curve X
over a prime field Fp, the counting function is of the form

#X.Fq/ D N.q/ D q �
X
˛

˛r C 1; q D pr

where the numbers ˛’s are the complex roots of the characteristic polynomial of the
Frobenius endomorphism acting on the étale cohomology H 1.X ˝ NFp;Q`/ of the
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curve (` ¤ p). By writing these roots in the form ˛ D p�, for � a zero of the Hasse–
Weil zeta function of X , the above equality reads as

#X.Fq/ D N.q/ D q �
X
�

order.�/ q� C 1: (2.16)

The equations (2.14) and (2.16) are now completely identical, except for the fact that
in (2.16) the values of q are restricted to the discrete set of powers of p and that (2.16)
involves only a finite sum, which allows one to differentiate term by term.

2.2 Explicit formulas

Equation (2.11) is a typical application of the Riemann–Weil explicit formulas. These
formulas become natural when lifted to the idèle class group. In this section we show
that, even if a definition of the hypothetical curve C is at this time still out of reach,
its counterpart, through the application of the class-field theory isomorphism, can be
realized by a space of adelic nature and in agreement with some earlier constructions
of Connes, Consani and Marcolli; cf. [9], [11] and [10].

We start by considering the explicit formulas in the following concrete form (cf. [3]).
Let F.u/ be a function defined on Œ1;1/ and such that F.u/ D O.u�1=2��/. Then
one sets

ˆ.s/ D

Z 1
1

F.u/ us�1du: (2.17)

The explicit formula takes the form
Z 1
1

.u�1=2 C u�3=2/F.u/du �
X
�2Z

order.�/ˆ

�
� �

1

2

�
(2.18)

D
X
p

1X
mD1

logp p�m=2F.pm/C

�



2
C

log�

2

�
F.1/C

Z 1
1

t3=2F.t/ � F.1/

t.t2 � 1/
dt:

We apply this formula with the function Fx determined by the conditions

Fx.u/ D u
3
2 for u 2 Œ1; x�; Fx.u/ D 0 for u > x: (2.19)

Then, we obtain

ˆx.s/ D

Z 1
1

Fx.u/ u
s�1du D

Z x

1

u
3
2 us�1du D

x3=2Cs

3=2C s
�

1

3=2C s
: (2.20)

Thus, it follows that

ˆx

�
1

2

�
D
x2

2
�
1

2
; ˆx

�
�
1

2

�
D x � 1; ˆx

�
� �

1

2

�
D
x1C�

1C �
�

1

1C �
:

(2.21)
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The left-hand side of the explicit formula (2.18) gives, up to a constant

J.x/ D
x2

2
C x �

X
�2Z

order.�/
x1C�

1C �
: (2.22)

The first term on the right-hand side of (2.18) gives

'.x/ D
X
n<x

nƒ.n/ (2.23)

while the integral on the right-hand side of (2.18) gives

Z 1
1

t3=2F.t/ � F.1/

t.t2 � 1/
dt D x � ArcTanh

�
1

x

�
C constant: (2.24)

Thus the explicit formula (2.18) is transformed into the equality

X
n<x

nƒ.n/ D
x2

2
�
X
�2Z

order.�/
x1C�

1C �
C ArcTanh

�
1

x

�
C constant: (2.25)

This formula is the same as (2.11). We refer to [20] for a precise justification of
the analytic steps. It follows that the left-hand side (2.22) of the explicit formula gives
a natural primitive J.x/ of the counting functionN.x/. It is thus natural to differentiate
formally the family of functions Fx with respect to x and see what the right-hand side
of the explicit formula is transformed into. By construction, one has, for u � 1

Fx.u/ D u
3
2Y.u � x/

where Y is the characteristic function of the interval .�1; 0�. The derivative of Y.s/
is �ı.s/. Thus, at the formal level, one derives

@xFx D u
3
2 ı.u � x/:

In fact, it is more convenient to rewrite the explicit formula (2.18) in terms of the
function g.u/ D u�

1
2F.u/. One then lets

Og.s/ D

Z 1
1

g.u/ usd�u: (2.26)

The explicit formula then takes the form

Og.0/C Og.1/ �
X
�2Z

order.�/ Og.�/

D
X
p

1X
mD1

logp g.pm/C

�



2
C

log�

2

�
g.1/C

Z 1
1

t2g.t/ � g.1/

t2 � 1
d�t: (2.27)
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The function gx.u/ corresponding to @xFx is just gx.u/ D uıx.u/ and it is character-
ized, as a distribution, by its evaluation on test functions b.x/. This gives

Z
b.u/gx.u/d

�u D b.x/: (2.28)

Next, we show how to implement the trace formula interpretation of the explicit formu-
las to describe the counting function N.u/ as an intersection number. First we notice
that the above explicit formula is a special case of the Weil explicit formulas. One lets
K be a global field, ˛ a nontrivial character of AK=K and ˛ D

Q
˛v its local factors.

Let h 2 S.CK/ have compact support. Then

Oh.0/C Oh.1/ �
X

�2bCK;1

X
Z
Q�

Oh. Q�; �/ D
X
v

Z 0
K�v

h.u�1/

j1 � uj
d�u (2.29)

where
R 0 is normalized by ˛v and Oh.�; z/ D

R
h.u/ �.u/ jujz d�u: These formulas

become a trace formula whose geometric side is of the form

Trdistr

�Z
h.u/#.u/d�u

�
D
X
v

Z

K�v

h.u�1/

j1 � uj
d�u: (2.30)

Here #.u/
.x/ D 
.u�1x/ is the scaling action of the idèle class group CK on the
adèle class space M D AK=K

�. The subgroups K�v � CK appear as isotropy groups.

One can understand why the terms h.u�1/
j1�uj

occur in the trace formula by computing

formally as follows the trace of the scaling operator T D �.u�1/

T 
.x/ D 
.ux/ D

Z
k.x; y/
.y/dy;

given by the distribution kernel k.x; y/ D ı.ux � y/,

Trdistr.T / D

Z
k.x; x/ dx D

Z
ı.ux � x/ dx D

1

ju � 1j

Z
ı.z/ dz D

1

ju � 1j
:

We refer to [4], [28] and [12] for the detailed treatment. We apply (2.30) by taking
K D Q and the function h of the form h.u/ D g.juj/ where the support of the
function g is contained in .1;1/. On the left-hand side of (2.30) one first performs
the integration in the kernel CQ;1 of the module CQ ! R�C. At the geometric level,
this corresponds to taking the quotient of M by the action of CQ;1. We denote by
#u the scaling action on this quotient. By construction this action only depends upon
juj 2 R�C. The equality (2.28) means that when we consider the distributional trace of
an expression of the form

R
gx.u/#ud

�u, we are in fact just taking the distributional
trace of #x since

Z
gx.u/#ud

�u D #x : (2.31)
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Thus we are simply considering an intersection number. We now look at the right-hand
side of (2.30), i.e. at the terms

Z 0
K�v

h.u�1/

j1 � uj
d�u: (2.32)

Since h.u/ D g.juj/ and the support of the function g is contained in .1;1/, one sees
that the integral (2.32) can be restricted in all cases to the unit ball ¹uI juj < 1º of the
local field Kv. In particular, for the finite places one has j1 � uj D 1, thus for each
finite prime p 2 Z one has

Z 0
Q�p

h.u�1/

j1 � uj
d�u D

1X
mD1

logp g.pm/: (2.33)

At the archimedean place one has instead

1

2

�
1

1 � 1
u

C
1

1C 1
u

�
D

u2

u2 � 1
:

The above equation is applied for u > 1, in which case one can write equivalently

1

2

�
1

j1 � u�1j
C

1

j1C u�1j

�
D

u2

u2 � 1
: (2.34)

Thus, the term corresponding to (2.32) yields the distribution 	.u/ of (2.7).
In Section 9, we shall re-consider the fixed points for the action of the idèle class

group CK on M D AK=K
�. This set is the union of the prime ideals pv D ¹x 2 M j

xv D 0º, as v varies among the places of the global field K.

3 The geometry of monoids

We denote by Mo the category of commutative ‘pointed’ monoids .M; 0/, where M
is a semigroup with a commutative multiplicative operation and an identity element 1.
The element 0 2 M is absorbing for M , i.e. it satisfies: 0x D x0 D 0, 8x 2 M .
The morphisms in Mo are unital homomorphisms of pointed monoids ' W .M; 0/ !
.N; 0/, thus satisfying the conditions '.1M / D 1N and '.0/ D 0.

The theory of Mo-schemes as in our earlier papers [6] and [7] develops, in parallel
with the classical theory of Z-schemes as in [14], the notion of a scheme as covariant
functor from Mo to the category of sets. This approach is based on the earlier geomet-
ric theories over monoids developed by K. Kato [22], A. Deitmar [13], N. Kurokawa,
H. Ochiai and M. Wakayama [26], B. Töen and M. Vaquié [33].

Several basic notions holding for (commutative) rings and their geometric counter-
parts naturally generalize to pointed monoids. From the algebraic side, we recall that
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an ideal I of a monoid M is a subset I � M such that 0 2 I and it satisfies the
property

x 2 I H) xy 2 I; 8y 2M: (3.1)

In particular, an ideal p � M is said to be prime if its complement pc D M n p is
a non-empty multiplicative subset of M , i.e. if the following condition is satisfied:

x … p; y … p H) xy … p: (3.2)

The complement pM D .M�/c of the invertible elements of M is the largest prime
ideal.

From the geometric side, we recall that a geometric monoidal space is a pair .X;OX/
where

� X is a topological space,

� OX is a sheaf of monoids.

The notions of a morphism (of monoidal spaces) as well as those of a prime spec-
trum SpecM and of a geometric scheme are adapted directly from the classical ones
(cf. [13]). The topology on SpecM admits a basis of open subsets of the following
type (as f varies in M ):

D.f / D ¹p 2 SpecM j f … pº:

By definition, an Mo-functor is a covariant functor from Mo to the category of sets.
A morphism of Mo-functors, � W X ! Y , is a natural transformation and as such it
determines (a family of) maps of sets

�M W X.M/! Y.M/; 8M 2 obj.Mo/

compatible with any homomorphism � WM !M 0 in Mo.
A new and interesting property fulfilled by any Mo-functor is that of being auto-

matically local (cf. [7] §3.4.1). Thus, the only requirement that an Mo-functor has to
satisfy to define an Mo-scheme is to admit an open covering of affine sub-functors.
We recall that a sub-functor Y of an Mo-functor X (i.e. Y.M/ � X.M/ for every
object M of Mo) is said to be open in X if for every morphism ' W Spec.M/ ! X

of Mo-functors, there exists an ideal I � M such that for every object N of Mo and
every � 2 Spec.M/.N / D HomMo.M;N / one has

'.�/ 2 Y.N / � X.N/ , �.I /N D N:

Let X be an Mo-functor. A family ¹X˛º of sub-functors of X determines a cover-
ing of X if for every abelian group H , the following equality (of sets) is fulfilled:
X.F1ŒH �/ D

S
˛ X˛.F1ŒH �/.
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Any Mo-scheme has an uniquely associated geometric realization (cf. [7] §3.4.5).
This is a geometric monoidal space whose construction presents several analogies with
the geometric realization of a Z-scheme but also a few new interesting features specif-
ically inherent to the discussion with monoids. The most important (new) property
states that the full sub-category of the abelian groups inside Mo, whose objects re-
place the fields within Mo, admits the final object F1 D F1Œ¹1º� (cf. [7] §3.4.5). This
fact implies a remarkable simplification in the description of the geometric realization
of an Mo-scheme as stated by the following

Theorem 3.1. The geometric space jX j associated to an Mo-scheme X is character-
ized by the property

X.M/ D Hom.SpecM; jX j/; 8M 2 obj.Mo/:

The set underlying jX j is canonically identified with X.F1/. The topology of jX j is
determined by the open subfunctors of X and the structure sheaf by the morphisms to
the affine line D , i.e. the functor D.M/ DM for all M 2 obj.Mo/.

We refer to [7] Theorem 3.34 for the detailed statement and proof.
The following canonical projection map describes a new feature of Mo-schemes

which does not hold in general for Z-schemes. For an Mo-scheme X and for all
M 2 obj.Mo/ we define

�M W X.M/! jX j; �M .�/ D �.pM /; 8� 2 HomMo.Spec.M/; jX j/ (3.3)

where pM is the largest prime ideal of M . Then, for any open subset U of jX j D
X.F1/ with associated sub-functor U � X one has

U .M/ D ��1M .U / � X.M/: (3.4)

3.1 The Mo-scheme P1
F1

A basic fundamental example of an Mo-scheme is the projective line P1F1 over F1. We

review shortly its description. As Mo-functor, P1F1 is defined by

P1F1.M/ DM [M� M; 8M 2 obj.Mo/ (3.5)

where the gluing map on the disjoint union M qM � M � ¹1; 2º is given by the
equivalence relation .x; 1/ � .x�1; 2/, 8 x 2M�.

The topological space P1F1 of its geometric realization (cf. [13], [6]) has three points

P1F1 D ¹0; u;1º; ¹0º D ¹0º; ¹uº D P1F1 ; ¹1º D ¹1º: (3.6)

There are three open sets U˙ and U D UC \ U� in P1F1

UC D P1F1 n ¹1º; U� D P1F1 n ¹0º; U D UC \ U�: (3.7)
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3.2 The monoidM D AK=K
� of adèle classes

Let K be a global field. The product in the ring of adèles over K, descends to the
quotient AK=K

� to define a natural structure of (commutative) monoid

M D AK=K
�; K� D GL1.K/: (3.8)

The groupCK of idèle classes is interpreted as the groupM� of the invertible elements
of the monoid M . The canonical projection (3.3) for the Mo-scheme P1F1 determines
in particular the map (M D AK=K

�)

�M W P
1
F1
.M/ DM [M� M ! P1F1 : (3.9)

�M associates the point u 2 P1F1 to each element of M� D CK and either 0 or1 to

the other elements of P1F1.M/. We define the projective adèle class space to be the set

P1F1.M/ DM [M� M .

3.3 The sheaf� of half-densities on P1
F1
.M/

To define a natural space S.M/ of functions on the quotient space M D AK=K
�

one considers the space of coinvariants for the action of K� on the Bruhat–Schwartz
space S.AK/ of complex-valued functions on the adèles of K. This action is described
explicitly by fq.x/ D f .qx/, 8x 2 AK, q 2 K�. More precisely, one starts with the
exact sequence

0! S.AK/0 ! S.AK/
�
! C ˚CŒ1�! 0 (3.10)

associated to the kernel of the K�-invariant linear map �.f / D .f .0/;
R
AK

f .x/dx/ 2

C ˚CŒ1� and then one sets

S.M/ WD S0.M/˚C ˚CŒ1�; S0.M/ WD S.AK/0=¹f � fqº (3.11)

where ¹f � fqº denotes the closure of the sub-space of S.AK/0 generated by the
differences f � fq , with q 2 K�.

We now introduce the functions on the projective adèle class space P1F1.M/. The

following space of sections determines uniquely a sheaf� on P1F1 , the restriction maps
are defined in (3.13),

�.UC; �/ D S.M/

�.U�; �/ D S.M/

�.UC \ U�; �/ D S1.CK/
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where S.CK/ is the Bruhat–Schwartz space over CK. For a number field K, S1.CK/

is defined as

S1.CK/ D
\
ˇ2R

�ˇS.CK/ D ¹f 2 S.CK/ j�
ˇ .f / 2 S.CK/; 8ˇ 2 Rº: (3.12)

Here, � 2 C.CK/ denotes the module � W CK ! R�C, �ˇ .g/ D �.g/ˇ . When K is
a global field of positive characteristic, S1.CK/ is the space of Schwartz functions on
CK with compact support (cf. [12] Definition 4.107 and [28]). The natural restriction
maps �.U˙; �/ ! �.UC \ U�; �/ vanish on the components C ˚ CŒ1� of S.M/,
while on S0.M/ they are defined as follows:

.Res f /.g/ D
X
q2K�

f .qg/; 8f 2 S0.M/ � �.UC; �/

.Res h/.g/ D jgj�1
X
q2K�

h.qg�1/; 8h 2 S0.M/ � �.U�; �/: (3.13)

3.4 Spectral realization onH 1.P1
F1
;�/

The following formulas define an action of CK on the sheaf �. For � 2 CK, define

#C.�/f .x/ D f .�
�1x/; 8f 2 �.UC; �/

#�.�/f .x/ D j�jf .�x/; 8f 2 �.U�; �/

#.�/f .x/ D f .��1x/; 8f 2 �.UC \ U�; �/:

The generator w D
�
0 1
1 0

�
of the Weyl group W � PGL2 acts on CK by the auto-

morphism g 7! gw D g�1, 8g 2 CK and this action defines the semi-direct product
N D CK ÌW . Moreover, w acts on P1F1 by exchanging 0 and1. The action of w on
the sheaf � is given by

w#f D f 2 �.U�; �/; 8f 2 �.UC; �/

w#f D f 2 �.UC; �/; 8f 2 �.U�; �/

w#f .g/ D jgj�1f .g�1/; 8f 2 �.UC \ U�; �/: (3.14)

This action defines the morphism of sheaves w# W �! w��. The following result is
proven in [6] (cf. Proposition 5.4)

Proposition 3.2. There exists a unique action of N D CK ÌW on the sheaf � which
agrees with (3.14) on W and restricts on CK to the (twist) representation #Œ�1

2
� WD

# ˝ ��1=2, where ��1=2 is seen as representation of CK.
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The Čech complex of the covering U D ¹U˙º of P1F1 has two terms

C 0 D �.UC; �/ � �.U�; �/

C 1 D �.UC \ U�; �/:

We introduce the following map† W S0.M/! S1.CK/,†.f /.x/ D
P
q2K�f .qx/.

Then, the co-boundary @ W C 0 ! C 1 is given by

@.f; h/.g/ D †.f /.g/ � jgj�1†.h/.g�1/: (3.15)

Let ˛ be a non-trivial character of the additive group AK=K. The lattice K � AK

coincides with its own dual. The Fourier transform on S.AK/0

F.f /.a/ D

Z
f .x/˛.ax/dx (3.16)

becomes canonically defined modulo the subspace ¹f � fqº. For a proof of the fol-
lowing statement we refer to [6] (cf. Lemma 5.3 and Theorem 5.5).

Theorem 3.3. The kernel of the co-boundary map @ W C 0 ! C 1 coincides with the
graph of the Fourier transform

H 0.P1F1 ; �/ D ¹.f; F.f // j f 2 S.AK/0=¹f � fqºº ˚C˚2 ˚ .CŒ1�/˚2: (3.17)

The representation #Œ�1
2
� of CK on H 1.P1F1 ; �/ determines the spectral realization

of the zeros of the L-functions. This representation is invariant under the symmetry
�.g/ 7! �.g�1/ of the group of Grössencharakters of the global field K.

4 Hyperstructures

In this section we briefly recall the results of [8] showing that the notion of hyperring
introduced by M. Krasner allows one to understand the algebraic structure of the adèle
class space HK D AK=K

� of a global field K.

4.1 Hypergroups and hyperrings

We start by reviewing the notion of a canonical hypergroup .H;C/. For our appli-
cations it will be enough to consider the commutative case and we denote by C the
hyper-composition law in H . The novelty is that for hypergroups such as H the sum
xCy of two elements inH is no longer a single element ofH but a non-empty subset
of H . It is customary to define a hyper-operation on H as a map

C W H �H ! P .H/�



From monoids to hyperstructures 163

taking values into the set P .H/� of all non-empty subsets ofH . One uses the notation
8A;B � H , AC B WD ¹[.aC b/ j a 2 A; b 2 Bº. The definition of a commutative
canonical hypergroup requires that H has a neutral element 0 2 H (i.e. an additive
identity) and that the following axioms apply:

.1/ x C y D y C x, 8x; y 2 H

.2/ .x C y/C z D x C .y C z/, 8x; y; z 2 H

.3/ 0C x D x D x C 0, 8x 2 H

.4/ 8x 2 H 9Š y.D �x/ 2 H s.t. 0 2 x C y

.5/ x 2 y C z H) z 2 x � y:

Property .5/ is usually called reversibility.

Lemma 4.1. Let .G; 	 / be a commutative group, and let K � Aut.G/ be a subgroup
of the group of automorphisms of G. Then the following operation defines a structure
of hypergroup on the set H D ¹K.g/ jg 2 Gº of the orbits of the action of K on G:

K.g1/ 	K.g2/ WD .Kg1 	Kg2/=K: (4.1)

The notion of a hyperring (cf. [23], [24]) is the natural generalization of the classi-
cal notion of a ring, obtained by replacing a classical additive law by a hyperaddition.
More precisely, a hyperring .R;C; 	/ is a non-empty set R endowed with a hyperaddi-
tionC and a multiplicative operation 	 satisfying the following properties:

(a) .R;C/ is a commutative canonical hypergroup

(b) .R; 	 / is a monoid with multiplicative identity 1

(c) 8r; s; t 2 R: r.s C t / D rs C rt and .s C t /r D sr C t r

(d) 8r 2 R: r 	 0 D 0 	 r D 0, i.e. 0 2 R is an absorbing element

(e) 0 ¤ 1.

Let .R1;C1; 	1/, .R2;C2; 	2/ be two hyperrings. A map f W R1 ! R2 is called
a homomorphism of hyperrings if the following conditions are satisfied:

.1/ f .aC1 b/ � f .a/C2 f .b/; 8a; b 2 R1

.2/ f .a 	1 b/ D f .a/ 	2 f .b/; 8a; b 2 R1:

4.2 K, S and the adèle class space HK D AK=K
�

A hyperring .R;C; 	 / is called a hyperfield if .R n ¹0º; 	 / is a group. The most ba-
sic example of a hyperfield is the Krasner hyperfield K D .¹0; 1º;C; 	 / with additive
neutral element 0, satisfying the hyper-rule: 1C1 D ¹0; 1º and with the usual multipli-
cation, with identity 1. Likewise F2 encodes the arithmetic of even and odd numbers,
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K encodes the arithmetic of zero and non-zero numbers. The hyperfield K is the natu-
ral extension, in the category of hyperrings, of the commutative (pointed) monoid F1,
i.e. .K; 	 / D F1.

Another interesting example of basic hyperstructure is the hyperfield of signs S D
.¹0;˙1º;C; 	 / where the hyper-addition is given by the “rule of signs”

1C 1 D 1; �1 � 1 D �1; 1 � 1 D �1C 1 D ¹�1; 0; 1º (4.2)

and where the usual multiplication is also given by the rule of multiplication of signs.
S encodes the arithmetic of the signs of numbers and it is the natural extension, in the
category of hyperrings, of the commutative (pointed) monoid F12 , i.e. .S; 	 / D F12 .

There is a unique hyperring homomorphism � W Z! S, �.n/ D sign.n/, 8n ¤ 0,
�.0/ D 0. Moreover, the absolute value determines a canonical surjective homomor-
phism of hyperfields � W S ! K. Then, by using the composite homomorphism
h D � ı � , one can perform the extension of scalars from Z to K and show that for
any commutative ring R containing Q as a subfield, one obtains the isomorphisms
R˝Z K D R=Q� and R˝Z S D R=Q�C (cf. [8] Proposition 6.1).

Let R be a commutative ring and let G � R� be a subgroup of its multiplicative
group. Then the following operations define a hyperring structure on the set R=G of
orbits for the action of G on R by multiplication:

� Hyperaddition

x C y WD .xG C yG/=G; 8x; y 2 R=G

� Multiplication
xG 	 yG D xyG; 8x; y 2 R=G:

In particular, one may start with a field K and consider the hyperring K=K�. This
way, one obtains a hyperstructure whose underlying set is made by two classes i.e. the
class of 0 and that of 1. It is easy to see that if K has more than two elements, then
K=K� is isomorphic to the Krasner hyperfield K .

In general, a hyperring need not contain K as a sub-hyperfield. For quotient hyper-
rings, like the ones we have introduced right above, there is a precise condition that
ensures the occurrence of this case (cf. [8] Proposition 2.6)

Theorem 4.2. Let R is a commutative ring and G � R� a proper subgroup of the
multiplicative group of units of R, then, the hyperring R=G contains K as a sub-
hyperfield if and only if ¹0º [G is a subfield of R.

Since the adèle class space HK D AK=K
� of a global field K is the quotient of the

commutative ring R D AK by G D K� and ¹0º [ G D K is a subfield of R D AK,
one obtains

Corollary 4.3. The adèle class space HK D AK=K
� of a global field K is a hyperring

extension of K.
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It is elementary to prove that for any ring R, the map

' W Spec.R/! Hom.R;K/; '.p/ D 'p

'p.x/ D 0 8x 2 p; 'p.x/ D 1 8x … p

determines a natural bijection of sets. This fact shows that the hyperfield K plays,
among hyperrings, the equivalent role of the monoid F1 among monoids (cf. [7] Propo-
sition 3.32).

4.3 Extensions of K and incidence groups

In this section we outline several results which show that the structure of hyperfield and
hyperring extensions of K is intimately connected to the geometric notion of incidence
group of Ellers and Karzel (cf. [15]). We refer to §3 of [8] to read more details and for
the proofs.

There is a canonical correspondence, originally established by Prenowitz in [29],
between K-vector spaces E and projective geometries .P ;L/ in which every line has
at least 4 points. The line passing through two distinct points x; y of P WD E n ¹0º is
defined by

L.x; y/ D .x C y/ [ ¹x; yº:

Conversely, the hyper-addition in E WD P [ ¹0º is defined by the rule

x C y D L.x; y/ n ¹x; yº; if x ¤ y; x C x D ¹0; xº:

If a group G is the set of points of a projective geometry, then G is called a two-
sided incidence group if the left and the right translations by G are automorphisms of
the geometry.

Let H 
 K be a hyperfield extension of K and let .P ;L/ be the associated ge-
ometry. Then, the multiplicative group H�, endowed with the geometry .P ;L/, is
a two-sided incidence group. Conversely, let G be a two-sided incidence group. Then,
there exists a unique hyperfield extension H 
 K such that H D G [ ¹0º.

The classification of Desarguesian commutative incidence groups due to H. Karzel
(cf. [21]) applies to commutative hyperfield extensionsH of K such that dimK H > 3.
Let H 
 K be a commutative hyperfield extension of K. Assume that the geometry
associated to the K-vector space H is Desarguesian (this condition is automatic if
dimK H > 3) and of dimension at least 2. Then, there exists a unique pair .F;K/ of
a commutative field F and a subfield K � F such that

H D F=K�:

In view of the result just stated, the classification of all finite, commutative hyperfield
extensions of K reduces to the determination of non-Desarguesian, finite projective
planes with a simply transitive abelian group of collineations. More precisely, if H 

K is a finite commutative hyperfield extension of K, then, one of the following cases
occurs:
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.1/ H D KŒG�, for a finite abelian group G.

.2/ There exists a finite field extension Fq � Fqm of a finite field Fq such that H D
Fqm=F�q .

.3/ There exists a finite, non-Desarguesian projective plane P and a simply transitive
abelian group G of collineations of P , such that G is the commutative incidence
group associated to H.

There are no known examples of finite, commutative hyperfield extensions H 
 K
producing projective planes as in case (3). In fact, there is a conjecture based on some
results of A. Wagner (cf. [1], [34], [35]) stating that such case cannot occur. M. Hall
proved two results (cf. [18]) which imply the following conclusions:

� Assume that H� is cyclic. Let nC 1 be the cardinality of each line of the geom-
etry. Then for each prime divisor of n, the map x 7! xp is an automorphism of
H 
 K.

� There exists an infinite hyperfield extension H 
 K whose geometry is non-
Desarguesian and H� ' Z.

Let H 
 K be a commutative hyperring extension of K. Assume that H has no zero
divisors and that dimK H > 3. Then, there exists a unique pair .A;K/ of a commuta-
tive integral domain A and a subfield K � A such that

H D A=K�:

Let Aj (j D 1; 2) be commutative algebras over two fields Kj ¤ F2 and let

� W A1=K
�
1 ! A2=K

�
2

be a homomorphism of hyperrings. Assume that the range of � is of K-dimension at
least 3, then � is induced by a unique ring homomorphism Q� W A1 ! A2 such that
˛ D Q�jK1 is a field inclusion ˛ W K1 ! K2. These results show that, in higher rank,
the category of hyperring extensions of K is the category of algebras over fields with
twisted morphisms.

5 The hyperfield Rconvex

In this section we prove that the set of the real numbers is endowed with a natural
structure of hyperfield extension Rconvex of the hyperfield of signs S. It turns out that
the hyperstructure on Rconvex is a refinement of the algebraic structure on the semi-field
Rmax
C commonly used in idempotent analysis and tropical geometry. The hyperfield

Rconvex has characteristic one and it comes equipped with a one parameter group of
automorphisms which plays the role of the Frobenius in characteristic one.



From monoids to hyperstructures 167

5.1 Sign-convex subsets of R

The sign of a real number determines a canonical surjective map

sign W R! ¹0;˙1º; sign.r/ D

8
<̂
:̂

0; if r D 0;

1; for r > 0;

�1; for r < 0.

(5.1)

For any pair of real numbers x; y 2 R, we set

c.x; y/ D ¹˛x C ˇy j ˛ > 0; ˇ > 0; sign.˛x C ˇy/ D ˛ sign.x/C ˇ sign.y/º:
(5.2)

Definition 5.1. A subset C � R is said to be sign-convex if 8x; y 2 C one has
c.x; y/ � C .

We fix a homeomorphism � W .0;1/ ! ¹ei� j � 2 .0; �/º of the positive
real line with the upper-half unit circle in C, such that limx!0 �.x/ D �1 and
limx!1 �.x/ D 1.

We let U D ¹0º[¹z 2 C j jzj D 1; z … Rº and we extend uniquely � to a bijection

� W R
�
! U by setting

�.x/ D ��.�x/ 8x ¤ 0; �.0/ D 0: (5.3)

For instance one can take

�.x/ D sign.x/ei�.x/; �.x/ D
�

1C x2
:

Lemma 5.2. For all x; y 2 R one has

z 2 c.x; y/, �.z/ 2 R�C�.x/CR�C�.y/: (5.4)

Proof. For x D 0, one has c.0; y/ D ¹yº, 8y 2 R and (5.4) holds. If y D 0, one
concludes in a similar way. Thus we can assume x ¤ 0 ¤ y. Next, we show that

0 2 c.x; y/, y D �x: (5.5)

If 0 2 c.x; y/, then there exist ˛ > 0; ˇ > 0 such that ˛x C ˇy D 0 and ˛ sign.x/C
ˇ sign.y/ D 0. This implies ˛ D ˇ and y D �x. Conversely, if y D �x one has
0 D x C y and 0 D sign.x/C sign.y/ so that 0 2 c.x; y/.

Since 0 2 R�C�.x/C R�C�.y/ if and only if y D �x, this proves that (5.4) holds
for z D 0. We can then assume that x; y; z are all different from 0. If 0 < x < y both
sides of (5.4) give the interval .x; y/ and one gets (5.4) when x and y have the same
sign. For x < 0 and y > 0 there are three possible cases and using (5.2) one gets:
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� If �x < y then c.x; y/ D .x; 0/ [ .y;1/.

� If �x D y then c.x; y/ D ¹x; 0; yº.

� If �x > y then c.x; y/ D .�1; x/ [ .0; y/.

Thus (5.4) can be checked directly in each case.

A subset � � C is called a convex cone if � is stable both for addition and for the
action of R�C on � by multiplication. For any subset X � C, the convex cone �.X/
generated by X verifies the equality

�.X/ n ¹0º D ¹˛x C ˇy; ˛ > 0; ˇ > 0; x; y 2 Xº n ¹0º: (5.6)

It may happen that 0 2 �.X/ cannot be written as a sum of two elements of R�CX , but
it is always possible to write 0 as a sum of three elements of R�CX .

Next results shows that sign-convex subsets of R are determined by convex-cones
in C.

Corollary 5.3. Let � be as in (5.3) and C � R. The following conditions are equiva-
lent:

� C is sign-convex.

� C D ��1.�/ where � be the cone generated by �.C /.

� There exists a convex cone � � C such that C D ��1.�/.

Proof. Let C � R be sign-convex. Let � D �.�.C // be the cone generated by �.C /.
By (5.6) any non-zero element of � is of the form


 D ˛�.x/C ˇ�.y/; for some ˛ > 0; ˇ > 0; x; y 2 C: (5.7)

Thus, by applying Lemma 5.2, one has 0 ¤ 
 D �.z/ 2 � ) z 2 C , for z ¤ 0.
If 0 2 � , then there exist three elements x; y; z of C and three positive real numbers
˛; ˇ; 
 > 0 such that ˛�.x/Cˇ�.y/C
�.z/ D 0. SinceC is sign convex, Lemma 5.2
shows that there exists a 2 C , with �a 2 C so that 0 2 c.a;�a/ � C .

IfC D ��1.�/ for some convex cone � �C, then, it follows again from Lemma 5.2
that C is sign-convex.

If C � R is sign-convex then the two subsets C˙ D C \˙.0;1/ � R are convex
i.e. they are intervals, but the converse of this statement fails. If C is sign-convex, so
is C [¹0º. Moreover, set aside R, the only sign-convex subsets C � R which contain
a pair x;�x, for some x > 0 are of the following types:

� Cx D ¹�x; 0; xº

� CCx D Œ�x; 0� [ Œx;1/

� C�x D .�1;�x� [ Œ0; x�.
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Lemma 5.4. Let C � R be sign-convex and x … C . Then the smallest sign-convex set
containing x and C is the set

C 0 D ¹xº [ C [
[
y2C

c.x; y/:

Proof. Since any sign-convex subset containing x and C contains C 0, and since C 0

contains x and C , it suffices to show that C 0 is sign-convex. This follows from Corol-
lary 5.3.

Lemma 5.5. For all x; y; z 2 R one has

t 2
[

u2c.x;y/

c.u; z/, �.t/ 2 R�C�.x/CR�C�.y/CR�C�.z/: (5.8)

Proof. By Lemma 5.2 one has �.t/ 2 R�C.R
�
C�.x/ C R�C�.y// C R�C�.z/ for any

t 2
S
u2c.x;y/ c.u; z/. Conversely, let t 2 R be such that

�.t/ D �1�.x/C �2�.y/C �3�.z/; �i > 0:

Let ˛ D �1�.x/ C �2�.y/. If there exists � > 0 such that �˛ 2 U (cf. (5.3)) then
there exists u 2 R with �.u/ D �˛ 2 R�C�.x/C R�C�.y/. Thus by Lemma 5.2 one
has u 2 c.x; y/ and since

�.t/ D ��1�.u/C �3�.z/ 2 R�C�.u/CR�C�.z/

one gets t 2 c.u; z/ �
S
v2c.x;y/ c.v; z/ as required. Otherwise one has ˛ 2 R,

˛ ¤ 0. One has �.x/ … ¹0;˙�.y/º. Let � D sign.˛/ 2 ¹�1; 1º. Then there exists an
open neighborhood V of � in the unit circle such that

V � R�C�.x/CR�C�.y/: (5.9)

One has �.t/ D ˛ C �3�.z/ by construction, and since �.z/ ¤ � it follows that �.t/
is in the interior of the short interval between � and �.z/ on the unit circle. Thus there
exists v 2 V , v ¤ � such that �.t/ is in the interior of the short interval between
v and �.z/ on the unit circle. Let u 2 R such that v D �.u/, then by (5.9) and
Lemma 5.2, one has u 2 c.x; y/. Moreover since �.t/ is in the interior of the short
interval between �.u/ and �.z/ one has t 2 c.u; z/ again by Lemma 5.2.

5.2 Construction of Rconvex

We now use the preliminary results of the previous subsection to construct the hyper-
field extension Rconvex of S.
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Theorem 5.6. On the set R there exists a unique structure of hyperfield Rconvex D

.R;Cc ; 	 /, where 8x; y 2 R one sets x Cc y D c.x; y/ i.e.

x Cc y WD ¹˛x C ˇy j ˛ > 0; ˇ > 0; sign.˛x C ˇy/ D ˛ sign.x/C ˇ sign.y/º
(5.10)

and where the multiplication 	 is the classical one. The hyperadditionCc on Rconvex is
uniquely determined by the properties:

.1/ x Cc y D .x; y/ 8y > x > 0

.2/ S � Rconvex as a sub-hyperfield.

Proof. The operation x Cc y D c.x; y/ is commutative by construction. For x D 0

one has
0Cc y D ¹ˇy j ˇ > 0; sign.ˇy/ D ˇ sign.y/º D ¹yº:

Thus 0 is a neutral element. By (5.5), one has 0 2 x Cc y , y D �x. Note that one
has

x Cc .�x/ D ¹�x; 0; xº; 8x 2 R (5.11)

and also

x Cc x D ¹xº; 8x 2 R: (5.12)

Moreover, we claim that for any real number a one has

a.x Cc y/ D ax Cc ay: (5.13)

This holds for a D 0. For a > 0 the statement follows from (5.10), by using the
equality sign.az/ D sign.z/ which is valid for all z 2 R. The claim holds also for
a < 0, in fact it follows by applying (5.10) and sign.az/ D � sign.z/ for all z 2 R.

The associativity of the hyper-addition Cc follows from Lemma 5.5 which shows
that .x Cc y/ Cc z D

S
u2c.x;y/ c.u; z/ is symmetric in x; y; z. Now, we prove the

reversibility of the hyper-addition Cc . By Lemma 5.2 one has

�z 2 x Cc y , 0 2 R�C�.x/CR�C�.y/CR�C�.z/:

Since this equivalent condition is symmetric in x; y; z we obtain the reversibility.
To prove the uniqueness of Rconvex it is enough to determine the hypersum 1Cc x �

R assuming x … ¹0;˙1º. For x > 0, this is the interval between 1 and x. Assume
then x < 0. For y < 0, one has using reversibility,

y 2 1Cc x , x 2 y �c 1 , � x 2 �y Cc 1 D ¹��y C .1 � �/j� 2 .0; 1/º:

Thus, for x < 0, we know the description the intersection .1 Cc x/ \ .�1; 0/, i.e.
if jxj < 1, it is the interval .x; 0/ and if jxj > 1 it is .�1; x/. By applying the
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distributivity we know, for x < 0, that .�1�c x/\.0;1/ D � ..1Cc x/ \ .�1; 0//,
and hence this determines t .�1�c x/\ .0;1/ for t > 0. Taking t D �1=x > 0, this
determines .1=x Cc 1/ \ .0;1/ which gives

if jxj < 1 W t .�.x; 0// D t .0;�x/ D .0; 1/

if jxj > 1 W t .�.�1; x// D t .�x;1/ D .1;1/:

Thus, for x < 0 we get, replacing x by 1=x,

jxj < 1; x < 0 ) 1Cc x D .x; 0/ [ .1;1/

jxj > 1; x < 0 ) 1Cc x D .�1; x/ [ .0; 1/

which gives the required uniqueness.

Proposition 5.7. Let Aut.Rconvex/ be the group of automorphisms of the hyperfield

Rconvex. The following map defines an isomorphism of (multiplicative) groups R�
�
!

Aut.Rconvex/, � 7! ��, where

��.x/ D x
� 8x > 0; ��.x/ D x 8x 2 S � Rconvex: (5.14)

Proof. Let first check that (5.14) defines an automorphism �� 2 Aut.Rconvex/. Since
�� is compatible with the product, one just needs to show the compatibility with the
hyperaddition Cc . This can be checked directly. Let then ˛ 2 Aut.Rconvex/ be an
automorphism. Since �1 is the unique additive inverse of 1, one gets that ˛.x/ D x

8x 2 S � Rconvex. Since the subgroup R�C of the multiplicative group is the subgroup
of squares, it is preserved globally by ˛ and thus ˛ defines a group automorphism of
R�C. Furthermore, since ˛ is compatible with the hyperaddition its restriction to R�C is
monotonic and hence it is given by ˛.x/ D x� for some � 2 R�.

Remark 5.8. There is no intermediate sub-hyperfield S � F � Rconvex, since for

 … ¹0;˙1º, one would have ˙
 > 0 and then 1C 
 would contain an open interval
generating the multiplicative group (one has �1 2 F ).

6 Function theory for hyperrings

We recall that a function on a schemeX , viewed as a covariant Z-functorX W Ring!

Sets, is a morphism of Z-functors f W X ! D , where D is the functor affine line
D D spec.ZŒT �/, with geometric scheme Spec.ZŒT �/ (cf. [14] Chapter I and [6]).
When X D Spec.R/, with R 2 obj.Ring/ (i.e. R a commutative ring with unit), one
derives a natural identification of functions on X with elements of the ring R

HomRing.ZŒT �; R/ ' R: (6.1)
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In the category of hyperrings, the identification (6.1) no longer holds in general. In-
deed, K has only two elements while HomHring.ZŒT �;K/ ' Spec.ZŒT �/ is count-
ably infinite (cf. [8] Proposition 2.13). In the following sections we take up the
study of function theory on the spaces Spec K and Spec S, i.e. we describe the sets
D.K/ D HomHring.ZŒT �;K/ and of D.S/ D HomHring.ZŒT �; S/ together with the
hyperoperations coming from addition and multiplication of functions.

6.1 Coproducts and homomorphisms to hyperrings

Let H be a commutative ring with unit, and let � W H ! H ˝Z H be a coproduct.
Given two ring homomorphisms 'j W H ! R (j D 1; 2) to a commutative ring R, the
composition ' D .'1 ˝ '2/ ı� defines a ring homomorphism ' W H ! R. When R
is a hyperring, one introduces the following notion

Definition 6.1. Let .H ; �/ be a commutative ring with a coproduct and let R be a hy-
perring. Let 'j 2 HomHring.H ; R/, j D 1; 2. One defines

'1 ?� '2 D
°
' 2 HomHring.H ; R/ j'.x/ 2

X
'1.x.1//'2.x.2//;

for all decompositions �.x/ D
X

x.1/ ˝ x.2/

±
: (6.2)

In general, for x 2 H , there are several ways to write

�.x/ D
X

x.1/ ˝ x.2/ (6.3)

which represent the same element of H˝H. The condition '.x/2
P
'1.x.1//'2.x.2//

has to hold for all these decompositions. In general, '1 ?� '2 can be empty or it may
contain several elements. When '1 ?� '2 D ¹'º is made by a single element we
simply write '1 ?� '2 D '.

The canonical homomorphism Z! H induces a restriction homomorphism

� W Hom.H ; R/! Hom.Z; R/: (6.4)

The following lemma shows that '1 ?� '2 is empty when the restrictions �.'j / D
'j jZ are distinct.

Lemma 6.2. Let .H ; �/ be a commutative ring with a coproduct and let R be a hy-
perring. Let 'j 2 HomHring.H ; R/, j D 1; 2. If ' 2 '1 ?� '2, then

'jZ D '1jZ D '2jZ: (6.5)

Proof. One has �.1/ D 1 ˝ 1 and thus �.nm/ D n ˝ m, 8n;m 2 Z. Taking
n D 1, (6.2) gives '.m/ D '2.m/ for all m 2 Z so that 'jZ D '2jZ and similarly
taking m D 1 we get 'jZ D '1jZ.
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Lemma 6.3. Let ' 2 '1 ?� '2 and let Jj D Ker.'j / (j D 1; 2) be the associated
ideals of H D ZŒT �. Then, one has

'.x/ D 0 8x with �x 2 J1 ˝H CH ˝ J2: (6.6)

Proof. Write a decomposition of the form

�x D
X

xi ˝Hi C
X

H 0k ˝ x
0
k; xi 2 J1; x

0
k 2 J2:

Then one has

'.x/ 2
X

'1.xi /'2.Hi /C
X

'1.H
0
k/'2.x

0
k/ D 0:

Let Jj be ideals in H . The subset J D J1 ˝H CH ˝ J2 of H ˝H is an ideal
of H ˝H and we set

J1 ?� J2 D ¹x 2 H j�x 2 J º: (6.7)

Since � is a ring homomorphism, J1 ?� J2 is an ideal of H .

Lemma 6.4. For any ' 2 '1 ?� '2, one has Ker.'1/ ?� Ker.'2/ � Ker.'/.

Proof. Let Jj D Ker.'j / (j D 1; 2). For �x 2 J D J1 ?� J2 it follows from (6.6)
that '.x/ D 0.

6.2 Hyperoperations on functions

The above results allow one to define the algebraic structure on functions, i.e. on the
elements of D.R/ D Hom.ZŒT �; R/. Here we use the 2 coproducts on H D ZŒT �
which are uniquely defined by

�C.T / D T ˝ 1C 1˝ T 2 H ˝H (6.8)

and

��.T / D T ˝ T 2 H ˝H : (6.9)

Definition 6.5. Let R be a hyperring and 'j 2 Hom.ZŒT �; R/ be two functions. Let
�� be either �C or ��. One sets

'1 ?�� '2 D
°
' 2 Hom.ZŒT �; R/ j'.x/ 2

X
'1.x.1//'2.x.2//

±
(6.10)

for any decomposition ��x D
P
x.1/ ˝ x.2/.

We now give a general construction of the elements ' 2 '1 ?� '2.
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Lemma 6.6. Let A be a ring and let G � A� be a subgroup of the units of A. We
denote by R D A=G the quotient hyperring and we let � W A ! A=G the projection
map. For a 2 A, let Q'a W ZŒT �! A be the ring homomorphism given by Q'a.p.T // D
p.a/ and we let

'a W ZŒT �! A=G 'a D � ı Q'a (6.11)

to be the composite homomorphism (of hyperrings). Let �� W ZŒT �! ZŒT �˝Z ZŒT �
be a coproduct and m W A ˝ A ! A the multiplication map. For a; b 2 A, we let
c 2 A be

c D  .T /;  D m ı . Q'a ˝ Q'b/ ı�
� W ZŒT �! A: (6.12)

Then, for any decomposition ��p D
P
p.1/ ˝ p.2/, one has

'c.p.T // 2
X

'a.p.1//'b.p.2//: (6.13)

Proof. Notice that  is determined by  .T / D c, thus  D Q'c and 'c D � ı  . If
��p D

P
p.1/ ˝ p.2/ one gets, by (6.12)

 .p/ D
X
Q'a.p.1// Q'b.p.2// 2 A: (6.14)

Since �.
P
xi / 2

P
�.xi / for any xi 2 A, one obtains

'c.p/ 2
X

'a.p.1//'b.p.2// (6.15)

as required.

Lemma 6.7. With the notations of Lemma 6.6 and for any a; b 2 A, one has

'aCb 2 'a ?�C 'b (6.16)

'ab 2 'a ?�� 'b: (6.17)

Proof. By applying Lemma 6.6 to the coproduct�� D �C resp.�� D �� , one gets
c D aC b, resp. c D ab.

7 Functions on Spec.K/

In this section we study the set of functions on Spec.K/ with their hyperoperations.
The map � W Hom.ZŒT �;K/! Hom.Z;K/ (cf. (6.4)) maps these functions to SpecZ
and we know (cf. Lemma 6.2) that the hyperoperations in D.K/ D Hom.ZŒT �;K/ oc-
cur fiberwise. We shall thus describe separately these hyperoperations within elements
of the same fiber ��1.p/, p 2 SpecZ (here, ��1.p/ refers to ��1.˛/, for ˛ W Z! K,
i.e. we identify p 2 Spec.Z/ with the kernel of a homomorphism ˛).
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7.1 Functions on Spec.K/: the fiber over ¹0º

In the following, we consider the fiber of � over the generic point ¹0º of SpecZ. Let
' 2 Hom.ZŒT �;K/, then ' 2 ��1.¹0º/ if and only if '.n/ D 1 for all n 2 Z,
n ¤ 0. In turn, this holds if and only if ' is the restriction to ZŒT � of an element of
Hom.QŒT �;K/. This means that when ' 2 ��1.¹0º/, one can extend ' to a homo-
morphism Q' W QŒT �! K by setting

Q'.p.T // D '.np.T // 8n ¤ 0; np 2 ZŒT �: (7.1)

By taking a common multiple of the denominators appearing in the coefficients of
p.T / 2 QŒT �, one sees that the definition of Q' is independent of n and determines
a multiplicative map. One also has

Q'.p1 C p2/ D '.np1 C np2/ 2 '.np1/C '.np2/ D Q'.p1/C Q'.p2/:

Thus, one obtains the identification

��1.¹0º/ D Hom.QŒT �;K/ D SpecQŒT �: (7.2)

Moreover, if �p D
P
p.1/˝ p.2/ holds in the extension of the coproduct to QŒT �!

QŒT �˝QŒT �, one can find nj 2 Z n ¹0º (j D 1; 2) such that the equality

�.n1n2p/ D
X

n1p.1/ ˝ n2p.2/

only involves elements of ZŒT �. This shows that one can set '1 ?�� '2 as in (6.10) by
implementing QŒT � rather than ZŒT � in Definition 6.5.

Hyperoperations on non-generic points

We denote by ı the generic point of SpecQŒT � D ��1.¹0º/ and we first determine
the two hyperoperations on the complement X D ��1.¹0º/ n ¹ıº of ı in SpecQŒT �.
This complement is the set of non-zero prime ideals of QŒT �. We identify X with the
quotient of the field of the algebraic numbers NQ � C by the action of the Galois group
AutQ. NQ/:

X D ��1.¹0º/ n ¹ıº ' NQ=Aut. NQ/: (7.3)

To a non-zero prime ideal p of QŒT � one associates the roots in NQ of a generator of p.
These roots form an orbit for the action of Aut. NQ/.

Theorem 7.1. The hyperoperations '1 ?�� '2 (� D C;�) of sum and product on
X D ��1.¹0º/ n ¹ıº coincide with the hyper-addition and hyper-multiplication on the
hyperstructure NQ=Aut. NQ/.
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Proof. Let 'j 2 Hom.ZŒT �;K/ (j D 1; 2) be associated to the prime polynomials
qj 2 ZŒT �, i.e. Ker. Q'j / � QŒT � is generated by qj . Let ˛ 2 Z.q1/ (resp. ˇ 2 Z.q2/)
be a zero of q1 (resp. q2). By Lemma 6.7 (here applied to A D NQ and G D NQ�), the
homomorphism ' 2 Hom.ZŒT �;K/ defined by

'.P.T // D P.˛ C ˇ/G 2 NQ= NQ� ' K

belongs to '1 ?�C '2. A similar result holds for ˛ˇ and ��. It remains to show that
all elements of '1 ?�� '2 are of this type. We first consider the addition, i.e. the set
'1 ?�C '2. Let q 2 QŒT � be the monic polynomial whose roots (in NQ) are all the
˛ C ˇ, with ˛ 2 Z.q1/ and ˇ 2 Z.q2/, i.e. q.T / D

Q
˛2Z.q1/;ˇ2Z.q2/

.T � ˛ � ˇ/.
Let n a non-zero integer such that nq.T / 2 ZŒT �. Then, it is enough to show that
nq.T / 2 Ker.'/ for any ' 2 '1 ?�C '2. In fact, by applying Lemma 6.4 it is enough
to show that

nq.T / 2 Ker.'1/ ?�� Ker.'2/ (7.4)

for �� D �C. The polynomial nq.T / is given, up to a multiplicative constant, by the
resultant (cf. [2], A IV, 6) of q1 and q2:

q.Z/ D ResultantT .q1.T /; q2.Z � T //: (7.5)

In particular, the polynomial q.X C Y / is the resultant

q.X C Y / D ResultantT .q1.X � T /; q2.Y C T //: (7.6)

It follows from [2], A IV, 6, Remark 4, by evaluation at T D 0, that there exist
polynomials A.X; Y / and B.X; Y / with rational coefficients such that

q.X C Y / D q1.X/A.X; Y /C q2.Y /B.X; Y /:

Then (7.4) for �� D �C easily follows.
One proceeds similarly with the second co-product ��. The polynomial q is the

monic polynomial whose roots (in NQ) are the ˛ˇ for ˛ 2 Z.q1/, ˇ 2 Z.q2/ as
above, i.e. q.T / D

Q
˛2Z.q1/; ˇ2Z.q2/

.T � ˛ˇ/. If ˇ D 0, then (6.9) shows that the
polynomial q.T / D T belongs to Ker.'1/ ?�� Ker.'2/. Thus we can assume that
the roots of q2.T / are all non-zero. The polynomial q is then, up to a multiplicative
constant, the resultant

q.Z/ D ResultantT .q1.T /; T
mq2.Z=T // (7.7)

where m is the degree of q2. In particular, the polynomial q.XY / is the resultant

q.XY / D ResultantT .q1.XT /; T
mq2.Y=T //: (7.8)

Then, it follows from [2], A IV, 6, Remark 4, by evaluation at T D 1, that there exist
polynomials A.X; Y / and B.X; Y / with rational coefficients such that

q.XY / D q1.X/A.X; Y /C q2.Y /B.X; Y /:

This implies (7.4) for �� D ��.
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Hyperaddition with the generic point

In this subsection we determine the hyperaddition law with the generic point ı 2
Spec.QŒT �/. We shall make use, as before, of the identificationX D ��1.¹0º/n¹ıº '
NQ=Aut. NQ/.

Theorem 7.2. In the fiber ��1.¹0º/ D Hom.QŒT �;K/ D SpecQŒT �, the hyperaddi-
tion with the generic point ı is given as follows

� ı ?�C ı D �
�1.¹0º/.

� ı ?�C ˛ D �
�1.¹0º/, 8˛ 2 NQ nQ.

� ı ?�C ˛ D ı, 8˛ 2 Q.

Proof. Let A D C and G D C�. Then, with the notations of Lemma 6.6, one has

ı D 'a; 8a 2 C n NQ: (7.9)

Thus Lemma 6.7 shows that ı ?�C ı D ��1.¹0º/ since any complex number can
be written as the sum of two transcendental numbers. The same lemma also shows
that ı ?�C ˛ contains ı for any ˛ 2 NQ. The second and third equalities follow from
Lemmas 7.4 and 7.5 proven below.

Lemma 7.3. Let a.T / be an irreducible polynomial in QŒT � of degree > 1 and let
J � QŒT � be the prime ideal generated by a.T / in QŒT �. Let P.T / be a polynomial
in QŒT �. Let

P.X C Y / D
X

Aj .X/Bj .Y /; Aj ; Bj 2 QŒT � (7.10)

be a decomposition of �C.P /. Then, if the degree of P is strictly positive there exist
at least two indices j in the decomposition (7.10) such that Aj ¤ 0 and Bj … J .

If P is a constant polynomial and i D 1 is the only index in (7.10) for which Ai ¤ 0
and Bi … J , then A1.X/ D d is a non-zero constant polynomial and a.T / divides
dB1.T / � c.

Proof. Let assume first that P is non-constant. Also, let assume that only B1 does not
belong to the prime ideal J generated by a.T / in QŒT �. Let ˛` 2 NQ, (` D 1; 2) be
two distinct roots of a.T /. Since Bj .˛`/ D 0 for j ¤ 1, one has, using (7.10)

P.X C ˛`/ D A1.X/B1.˛`/; ` D 1; 2:

It follows that B1.˛`/ ¤ 0 and that

P.X C ˛1/=B1.˛1/ D P.X C ˛2/=B1.˛2/

so that
P.X C ˛1 � ˛2/ D �P.X/; � D B1.˛1/=B1.˛2/:
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But since ˛1 � ˛2 ¤ 0 and � ¤ 0 this yields infinitely many zeros for P , thus we
derive a contradiction.

Assume now that P D c is constant and i D 1 is the only index in (7.10) for which
Ai ¤ 0 and Bi … J . Let ˛ 2 NQ be a root of a.T /. Then (7.10) implies that

c D A1.X/B1.˛/:

Thus A1.X/ D d is a non-zero constant. Hence B1.˛/ D c=d is independent of the
choice of ˛ and dB1.T / � c is divisible by a.T /.

Let a.T / be an irreducible polynomial in QŒT �, we set

 a D '˛; 8˛ 2 NQ; a.˛/ D 0: (7.11)

Lemma 7.4. Let a.T / be an irreducible polynomial in QŒT � of degree > 1. Then

ı ?�C  a D �
�1.0/: (7.12)

Proof. Let ' 2 ��1.0/. In order to show that ' 2 ı ?�C  a, we need to prove that
for any polynomial P 2 QŒT � and any decomposition as (7.10) one has

'.P / 2
X

ı.Aj / a.Bj /: (7.13)

If there are two indices i for which Ai ¤ 0, Bi … J , then (7.13) follows from
 a.Bi / D 1 and ı.Ai / D 1 since we then derive

X
ı.Aj / a.Bj / D ¹0; 1º: (7.14)

Thus Lemma 7.3 shows that (7.13) holds when P is non-constant. If P D c ¤ 0 is
constant and i D 1 is the only index i for which Ai ¤ 0, Bi … J then by applying
Lemma 7.3 we get that A1.X/ D d is a constant and a.T / divides dB1.T / � c, thus
 a.B1/ D  a.dB1/ D  a.c/ and both sides of (7.13) are equal to ¹1º. Finally if
P D 0 then either Bj 2 J for all j with Aj ¤ 0 or there are two indices j for which
Aj ¤ 0 and Bj … J . In both cases on has (7.13). The inclusion ı ?�C  a � �

�1.0/

follows from Lemma 6.2.

Lemma 7.5. Let a.T / be a polynomial in QŒT � of degree 1. Then

ı ?�C  a D ı:

Proof. Let a.T / D mT � n where m ¤ 0 and m; n 2 Z. Let ' 2 ı ?�C  a, we want
to show that '.P / D 1 for any polynomial P.T / ¤ 0. Using the Taylor expansion of
P at Y D n

m
, we have

P.X C Y / D P
�
X C

n

m

�
CD.X; Y /

�
Y �

n

m

�
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with D.X; Y / 2 QŒX; Y �. By multiplying both sides of the above equality by a non-
zero integer k to get rid of the denominators, we obtain an equality of the form

dP.X C Y / D A.X/CE.X; Y /a.Y /

where A andE have both integral coefficients. Then, the definition of ı?�C a shows
that

'.P / D '.kP / 2 ı.A/ D ¹1º:

Thus '.P / D 1 for any polynomial P.T / ¤ 0 and ' D ı.

Remark 7.6. By Theorem 7.1, the hyperaddition in X D ��1.¹0º/ n ¹ıº defines
a canonical hypergroup. Using Theorem 7.2, one checks that the presence of the
generic element ı does not spoil the associativity. Indeed, the sum .x ?�C y/?�C z of
three elements one of which is ı is equal to ��1.0/, unless the two remaining elements
are in Q, in which case the sum is equal to ı. Note also that one has x ?�C y � Q
only if x and y are in Q. However the reversibility property for hypergroups no longer
holds since for ˛ 2 Q and ˇ 2 NQ nQ one has

˛ 2 ı � ˇ; ˇ … ı � ˛:

Hyper-multiplication with the generic point

We shall keep using the identification (7.3). Note that 0 is an absorbing element for
the hyperoperation ?�� .

Theorem 7.7. In the fiber ��1.¹0º/ D Hom.QŒT �;K/ D SpecQŒT �, the hyper-
multiplication with the generic point ı is given by

� ı ?�� ı D �
�1.0/ n ¹0º.

� ı ?�� ˛ D �
�1.0/ n ¹0º, 8˛ 2 NQ ˛n … Q, 8n > 0.

� ı ?�� ˛ D ¹ıº, 8˛ 2 NQ, ˛ ¤ 0, ˛n … Q for some n > 0.

Proof. Let A D C and G D C�. Then, with the notations of Lemma 6.6, one
has (7.9). Lemma 6.7 implies the first equality since any non-zero complex num-
ber can be written as the product of two transcendental numbers. The same lemma
also shows that ı ?�� ˛ contains ı for any non-zero ˛. The second and third equalities
follow from Lemmas 7.10 and 7.11 here below.

Lemma 7.8. Let a.T / be an irreducible polynomial in QŒT � which admits two non-
zero roots ˛1; ˛2 2 NQ whose ratio is not a root of unity and let J � QŒT � be the prime
ideal generated by a.T / in QŒT �. Let P.T / be a polynomial in QŒT �. Let

P.XY / D
X

Aj .X/Bj .Y /; Aj ; Bj 2 QŒT � (7.15)
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be a decomposition of ��.P /. If P ¤ 0 has a non-zero root, then there exist at least
two indices j in the decomposition (7.15) such that Aj ¤ 0 and Bj … J .

If P D cT n, c 2 Q and i D 1 is the only index for which Ai ¤ 0, Bi … J in (7.15),
then A1.X/ D dXn, with d 2 Q and a.T / divides dB1.T / � cT n.

Proof. Assume first that P has a non-zero root. We also assume that A1 ¤ 0 and
only B1 does not belong to the prime ideal J generated by a.T / in QŒT �. Let ˛`,
` D 1; 2, be two distinct non-zero roots of a.T / whose ratio is not a root of unity.
Since Bj .˛`/ D 0 for j ¤ 1, one has

P.X˛`/ D A1.X/B1.˛`/; ` D 1; 2:

Then, it follows that B1.˛`/ ¤ 0 and

P.X˛1/=B1.˛1/ D P.X˛2/=B1.˛2/

so that
P.X˛1=˛2/ D �P.X/; � D B1.˛1/=B1.˛2/:

But since ˛1=˛2 is not a root of unity, � ¤ 0 and P has a non-zero root, this argument
yields infinitely many zeros for P , thus it produces a contradiction.

Assume now that P D cT n, for c 2 Q and that i D 1 is the only index i in the
decomposition (7.15) of P.XY / for which Ai ¤ 0 and Bi … J . Let ˛ 2 NQ, ˛ ¤ 0 be
a root of a.T /. Then (7.15) implies that

cXn˛n D A1.X/B1.˛/:

Thus A1.X/ D dXn where d ¤ 0, d 2 Q. Hence B1.˛/ D c˛n=d and dB1.T / �
cT n is divisible by a.T / since it vanishes on all roots of a.T /.

Lemma 7.9. Let a.T / be an irreducible polynomial in QŒT � which admits two non-
zero roots ˛1; ˛2 2 NQ whose ratio is not a root of unity. Then (cf. (7.11))

ı ?��  a D �
�1.0/ n ¹0º: (7.16)

Proof. Let ' 2 ��1.0/ with ' ¤  T . We show that for any P 2 QŒT � and any
decomposition (7.15), one has

'.P / 2
X

ı.Aj / a.Bj /: (7.17)

We first assume that P admits a non-zero root. By Lemma 7.8 there are at least two
indices i D 1; 2 for which Ai ¤ 0, Bi … J . Thus ı.Ai / D 1,  a.Bi / D 1 and so

X
ı.Aj / a.Bj / D ¹0; 1º: (7.18)
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The remaining polynomials P.T / have only the zero root T D 0 and thus they are
of the form cT n where c 2 Q. For c D 0, Lemma 7.8 shows that either all Bi 2 J
or there are at least two indices i D 1; 2 for which Ai ¤ 0, Bi … J . Thus in this
case (7.17) holds. We can thus assume c ¤ 0. Since ' ¤  T one has '.P / D 1. We
prove that the right-hand side of (7.17) always contains 1. This statement holds when
there are at least two indices i for which Ai ¤ 0, Bi … J . By Lemma 7.8, if i D 1

is the only index i for which Ai ¤ 0, Bi … J then A1.X/ D dXn, where d ¤ 0

and a.T / divides dB1.T / � cT n. It is enough to show that  a.B1/ D 1. From the
inclusion  a.x C y/ �  a.x/C  a.y/ and the equality

 a.dB1.T / � cT
n/ D 0

it follows
 a.B1/ D  a.dB1/ D  a.cT

n/ D 1:

Finally, note that 0 does not belong to ı ?��  a since  T .T / D 0 while ��.T / D
T ˝ T and ı.T / D  a.T / D 1.

Lemma 7.10. Let a.T / be an irreducible polynomial in QŒT � not proportional to T ,
such that the ratio of any two roots ˛1; ˛2 2 NQ of a.T / is a root of unity. Let P.T / be
an irreducible polynomial in QŒT �. Then P.T / has a multiple M.T / D C.T /P.T /

such that ��.M/ admits a decomposition

M.XY / D A.X/B.Y /CD.X; Y /a.Y / (7.19)

where A ¤ 0 and B is not divisible by a.

Proof. One has .˛1=˛2/n D 1 for a suitable n and all roots of a.T /. Thus ˛n D � 2 Q
for all roots ˛ of a. This shows that a.T / is an irreducible factor of T n � �. Let
N 2 QŒT � and consider the polynomial H.T / D N.T n/. Next we show that one has
a decomposition

H.XY / D A.X/CD.X; Y /a.Y /: (7.20)

We let A.X/ D N.Xn�/ and note thatK.X; Y / D H.XY /�N.Xn�/ vanishes when
Y n D � and hence when Y is a root of a.Y /. Thus K.X; Y / is divisible by a.Y /
and it can be written in the form D.X; Y /a.Y /; this proves (7.20). It remains to show
that any irreducible polynomial P.T / has a multiple H.T / D C.T /P.T / of the form
H.T / D N.T n/. Let

P.T / D c
Y
k

.T � ˛k/

be the factorization of P.T / in NQŒT �. Let

H.T / D N.T n/; N.T / D c
Y
k

.T � ˛nk/:

Then N.T / 2 QŒT � and P divides H . This provides the required conclusion.
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Lemma 7.11. Let a.T / be an irreducible polynomial in QŒT � not proportional to T ,
such that the ratio of any two roots ˛1; ˛2 of a.T / is a root of unity. Then

ı ?��  a D ı: (7.21)

Proof. Let ' 2 ı ?��  a. Let P.T / be an irreducible polynomial in QŒT �. We want
to show that '.P / D 1. By Lemma 7.10, P.T / has a multiple M.T / D C.T /P.T /

fulfilling (7.19). Then
'.M/ 2 ı.A/ a.B/ D 1

thus '.M/ D 1 and '.P / D 1. This shows that only ı may belong to ı ?��  a and
this is the case as follows from the proof of Theorem 7.7.

Remark 7.12. By Theorem 7.1, the hypermultiplication in ��1.¹0º/ n ¹0; ıº defines
a canonical hypergroup. Using Theorem 7.7 one checks that the presence of the
generic element ı does not spoil the associativity. Indeed the product .x ?�� y/?�� z
of three non-zero elements one of which is ı is equal to ��1.0/ n ¹0º unless the two
remaining elements are in Qroot D ¹˛ j 9n; ˛n 2 Qº and in that case the product is
equal to ı. Note that one has x ?�� y � Qroot only if x and y are in Qroot. However
the reversibility property for hypergroups no longer holds.

7.2 Functions on Spec.K/: the fiber over ¹pº

Let p be a prime integer. In this section we compute the hyper-addition and the hyper-
multiplication in the fiber ��1.p/ of � W Hom.ZŒT �;K/! Hom.Z;K/. We let � be
an algebraic closure of the field of fractions Fp.T /.

Theorem 7.13. The following map determines a bijection of �=Aut.�/ with the fiber
��1.p/ � Hom.ZŒT �;K/:

˛ 2 � 7! '˛; '˛.P.T // D P.˛/�
� 2 �=�� ' K: (7.22)

The hyperoperations '1 ?�� '2 (� D C;�) on the fiber ��1.p/ coincide with the
hyper-addition and hyper-multiplication of the hyperstructure �=Aut.�/.

Proof. For ˛ 2 � one has by construction '˛ 2 ��1.p/ � Hom.ZŒT �;K/. Con-
versely, let ' 2 ��1.p/, then the kernel of ' determines a prime ideal J � FpŒT �.
If J D ¹0º, then ' D '˛ for any ˛ 2 � n NFp . By [2] Proposition 9 (Chapter V,
§XIV, AV 112), the group Aut.�/ acts transitively on the complement � n NFp of the
algebraic closure of Fp . If J ¤ ¹0º, then it is generated by an irreducible (separable)
polynomial a.T / 2 FpŒT � and ' D '˛ for any root of a.T / in NFp � �. The set of
roots of a.T / in NFp � � is a single orbit of the action of Aut. NFp/ and hence of Aut.�/
(cf. [2] Corollary 1, Chapter V, §XIV, AV 111). This proves the first statement. The
proof of Theorem 7.1, with FpŒT � in place of QŒT � shows that the hyper-operations
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'1 ?�� '2 (� D C;�) of sum and product on the complement of the generic point in
��1.p/ coincide with the hyper-addition and hyper-multiplication on the hyperstruc-
ture NFp=Aut. NFp/. It remains to determine these operations when the generic point ıp
is involved. It follows from Lemma 6.7 applied to K ' �=�� that

ıp ?�C ıp D �
�1.p/:

The end of the proof then follows from Lemma 7.15 and Lemma 7.17.

We now use the existence of enough “additive” polynomials in characteristic p
(cf. [16]).

Lemma 7.14. Let a.T / 2 FpŒT � be an irreducible polynomial of degree n > 0. Let
Sm.T / D T

pm � T , with njm. Then, there exists B.T / 2 FpŒT � such that

Sm.Y / D B.Y /a.Y / (7.23)

Sm.X C Y / D Sm.X/C B.Y /a.Y /: (7.24)

Proof. Every root of a.T / in NFp is a root of Sm.T /, thus a divides Sm. The second
statement follows from the equality Sm.X C Y / D Sm.X/C Sm.Y /.

Lemma 7.15. Let a.T / 2 FpŒT � be an irreducible polynomial of degree n > 0. Then

ıp ?�C  a D ıp:

Proof. LetP.T / 2 FpŒT � be an irreducible polynomial of degree k and let ' 2 ıp?�C
 a. Then we show that '.P / D 1. By Lemma 7.14, Sm is a multiple of P for any
integer multiple m of the degree k of P . By taking m D kn and using Lemma 7.14,
we obtain

�C.Sm/ D Sm ˝ 1C 1˝ Ba; '.Sm/ 2 ıp.Sm/ a.1/C ıp.1/ a.Ba/ D ¹1º:

Since P divides Sm, one gets '.P / D 1. This shows that only ıp can belong to
ıp ?�C  a. Finally we prove that ıp ?�C  a 3 ıp . This follows from Lemma 6.7
applied to �=�� ' K, since ıp D '� for any 
 2 � n NFp and  a D '˛ for any root
˛ of a.

Lemma 7.16. Let a.T / 2 FpŒT � be an irreducible polynomial of degree n > 0, not

proportional to T . Let Uk.T / D T p
k�1 � 1, with njk. Then, there exists B.T / 2

FpŒT � such that

Uk.Y / D B.Y /a.Y / (7.25)

Uk.XY / D Uk.X/Y
pk�1 C B.Y /a.Y /: (7.26)
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Proof. Every root of a.T / in NFp is a root of Uk and thus a divides Uk . The second
statement follows from the equality

.XY /p
k�1 � 1 D .Xp

k�1 � 1/Y p
k�1 C .Y p

k�1 � 1/:

Lemma 7.17. Let a.T / 2 FpŒT � be an irreducible polynomial of degree n > 0, not
proportional to T . Then

ıp ?��  a D ıp:

Proof. Let P.T / 2 FpŒT � be an irreducible polynomial not proportional to T . Then,
by taking for k a common multiple of n and of the degree of P , one gets from (7.23)
that Uk.T / is a multiple of P.T / and it fulfills (7.26). Let ' 2 ıp ?�� 'a. We show
that '.P / D 1. It is enough to prove that '.Uk/ D 1. From (7.26), it follows that

��.Uk/ D Uk ˝ T
pk�1 C 1˝ Ba;

'.Uk/ 2 ıp.Uk/ a.T
pk�1/C ıp.1/ a.Ba/ D 1:

One has ��.T / D T ˝ T and thus '.T / 2 ıp.T / a.T / D ¹1º so that '.T / D 1 and
one gets ' D ıp . Since Lemma 6.7 shows that ıp 2 ıp ?��  a, one gets the required
conclusion.

8 Functions on Spec.S/

We recall that S D ¹˙1; 0º is the hyperfield of signs. We start by describing the
functor Hom. 	 ; S/ on ordinary rings. We let

j 	 j W S! K (8.1)

be the homomorphism absolute value. Thus, for a given (commutative) ring A and
an element ' 2 Hom.A; S/, one has: j 	 j ı ' D j'j 2 Hom.A;K/. This compos-
ite map is determined by its kernel which is a prime ideal of A. We recall (cf. [8]
Proposition 2.11) the following result.

Proposition 8.1. An element ' 2 Hom.A; S/ is determined by

a) its kernel Ker.'/ 2 Spec.A/

b) a total order on the field of fractions of A=}, } D Ker.'/.

Note that given a prime ideal } � A and a total order on the field F of fractions of
A=}, the corresponding homomorphism ' 2 Hom.A; S/ is the composite

' W A ! A=} ! F ! F=F �C ' S: (8.2)

The kernel of ' is } and '�1.1/ determines the order on F .
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8.1 Description of Hom.ZŒT �;S/

Notice that since 1C 1 D 1 in S, the set Hom.Z; S/ contains only one element which
corresponds to Ker.'/ D .0/ (here A D Z) and the usual order on Q. We call this
element ' the sign. Thus, for ' 2 Hom.ZŒT �; S/ D D.S/ a function over Spec.S/,
the restriction of ' to Z is equal to the sign and there is a unique extension Q' of ' to
Hom.QŒT �; S/ given by

Q'.p.T // D '.np.T //; n > 0; np.T / 2 ZŒT �: (8.3)

This construction determines an identification Hom.ZŒT �; S/ ' Hom.QŒT �; S/. The
functions on Spec.S/ are thus determined by elements of Hom.QŒT �; S/, i.e. by

a) a prime ideal J � QŒT �

b) a total order on the field of fractions of QŒT �=J .

The description of the set Hom.QŒT �; S/ is given in [8] Proposition 2.12.

Proposition 8.2. The elements of D.S/ D Hom.ZŒT �; S/ are described by

!�.P.T // D Sign.P.�//; 8� 2 Œ�1;1� (8.4)

and, for � 2 NQ \R, by the two elements

!˙� .P.T // D lim
�!0C

Sign.P.�˙ �//: (8.5)

One has the natural map

Re W Hom.QŒT �; S/! Œ�1;1� (8.6)

defined by

Re.'/ D sup¹a 2 Q; '.T � a/ D 1º 2 Œ�1;1�: (8.7)

The set of rational numbers involved in (8.7) is a Dedekind cut (with a possible largest
element). One thus gets

'.T � a/ D 1; 8a < Re.'/; '.T � a/ D �1; 8a > Re.'/: (8.8)

Corollary 8.3. .1/ Let ' 2 Hom.QŒT �; S/. If Ker.'/ ¤ .0/ is generated by the
prime polynomial q.T /, then Re.'/ D ˛ 2 R is a root of q.˛/ D 0, and ' D !˛ .

.2/ There is only one ' 2 Hom.QŒT �; S/ such that Re.'/ D C1 (resp. �1) and it
is given by

'.p.T // D lim
˛!1

Sign.p.˛// .resp. lim
˛!�1

Sign.p.˛///: (8.9)
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.3/ If � 2 R n NQ, then !� is the only element  such that Re. / D �.

.4/ If Re.'/ D ˛ 2 NQ and Ker.'/ D .0/, then ' D !s˛ where s D '.q/ 2 ¹˙1º and
q 2 QŒT � is an irreducible polynomial such that q.˛/ D 0 and q0.˛/ > 0.

Proof. All statements are straightforward consequences of the concrete description of
the elements of Hom.QŒT �; S/ given in Proposition 8.2. Next, we shall explain briefly
how the above statements can be proven directly using [2] Chapter VI.
.1/ When Ker.'/ ¤ .0/, the quotient F D QŒT �=Ker.'/ is a finite extension of

Q and a total order on F is necessarily archimedean and hence it is given by an order
embedding F � R i.e. the map P.T / 7! P.˛/, where ˛ is a real root of q.T /. One
then gets ' D !˛ and Re.'/ D ˛.
.2/ If Re.'/ D C1, one has T � n for all n 2 N for the corresponding order on

QŒT � and the proof of Proposition 4 of [2] A.VI.24 shows that (8.9) holds.
.3/; .4/ Assume that Re.'/ D ˛ 2 R and Ker.'/ D .0/. Then, by Proposition 8.2

one gets a total order on the field Q.T / of rational fractions and for some n 2 N one
has �n < T < n. Thus, all polynomials p.T / are finite, i.e. they belong to an interval
Œ�m;m� for some finite m. If all fractions p.T /=q.T / are finite, then the order on
Q.T / is archimedean and thus one derives an order embedding Q.T / ! R which
shows that ' D !˛, ˛ D Re.'/. Since p.T / is finite, this can fail only when some
q.T / ¤ 0 is infinitesimal

˙q.T / < 1=n 8n 2 N: (8.10)

Thus the statements .3/; .4/ follow from the next lemma.

Lemma 8.4. Let � be a total order on QŒT � such that T is finite. Let J be the set of
polynomials q.T / 2 QŒT � fulfilling (8.10). Then

� J is a prime ideal.

� The sign of p … J only depends upon the class of p in the quotient QŒT �=J and
there exists a real root ˛ of the monic polynomial a.T / generating J such that

p > 0 ” p.˛/ > 0; 8p … J: (8.11)

� The total order � is uniquely determined by ˛ and the sign of a.T /.

Proof. Since p.T / is finite, 8p.T /, J is an ideal. Moreover, if qj .T / > 1=nj one has
q1.T /q2.T / > 1=n1n2 and one derives that J c D QŒT � n J is multiplicative, thus J
is prime.

Next we show that the total order of QŒT � defines a total ordering on the quotient
QŒT �=J . This follows by noticing that if p.T / > 0 in QŒT � and p.T / … J , then
p.T /C r.T / > 0 for any r.T / 2 J . Indeed, since p … J , one has p.T / > 1=n for
some n 2 N, but then since �r < 1=n, one derives p C r > 0. Thus, one gets a total
order on QŒT �=J . As in the proof of .1/ in Corollary 8.3, this order is archimedean
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and thus it is produced by an algebraic number ˛, root of the generator a.T / of the
prime ideal J . Thus (8.11) follows. Let p.T / 2 QŒT �, then there exists a unique n
such that p 2 J n, p … J nC1. On has p D anA where A … J . Since A … J , the sign
of A is given by the sign of A.˛/ ¤ 0. Thus the sign of p is determined by the sign
of a.

8.2 Operations on functions on Spec.S/

We now investigate the hyper-structure on the set of functions on Spec.S/. We consider
the finite functions, i.e. the elements of

Dfinite.S/ D ¹' 2 Hom.QŒT �; S/ j Re.'/ 2 Rº: (8.12)

Let F D R.�/ be the ordered field of rational fractions in �, with � > 0 and infinitesi-
mal. In particular, the sign of a polynomial p.�/ D ak�

k C akC1�
kC1 C 	 	 	 C an�

n

is given by the sign.ak/, i.e. by the limit

lim
�!0C

sign.p.�//: (8.13)

Any finite function ' with Re.'/ D ˛ can be obtained as the composite

QŒT �
�
! F ! F=F �C ' S; �.T / D ˛ C t� (8.14)

for some t 2 R.

Lemma 8.5. Let '1; '2 2 Hom.QŒT �; S/ be two finite functions with Re.'j / 2 R,
j D 1; 2. Then

.1/ '1 ��C '2 and '1 ��� '2 are non-empty sets.

.2/ Re.'/ D Re.'1/C Re.'2/, 8' 2 '1 ��C '2.

.3/ Re.'/ D Re.'1/Re.'2/, 8' 2 '1 ��� '2.

Proof. Lemmas 6.7 and (8.14) ensure that '1 ��C '2 and '1 ��� '2 are non-empty
sets. For j D 1; 2, let j̨ D Re.'j /. Let ' 2 '1 ��C '2. For aj 2 Q, one has
�C.T � a1 � a2/ D .T � a1/˝ 1C 1˝ .T � a2/ so that

'.T � a1 � a2/ 2 '1.T � a1/'2.1/C '1.1/'2.T � a2/: (8.15)

By applying (8.8), the above inclusion shows that if aj < j̨ then '.T �a1�a2/ D 1
and a1 C a2 � Re.'/. Similarly, if aj > j̨ , one gets that '.T � a1 � a2/ D �1 and
a1 C a2 � Re.'/. This shows that Re.'/ D ˛1 C ˛2 and .2/ follows.

Let ' 2 '1 ��� '2. For a; b 2 Q, one has

��.T � ab/ D T ˝ T � ab D .T � a/˝ T C a˝ .T � b/:
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Thus

'.T � ab/ 2 '1.T � a/'2.T /C '1.a/'2.T � b/: (8.16)

To prove .3/, we first assume that j̨ D Re.'j / > 0. This implies 'j .T / D 1. Thus,
for 0 < a < ˛1, 0 < b < ˛2, one gets '.T � ab/ 2 '1.T � a/'2.T /C '1.a/'2.T �
b/ D 1 	 1 C 1 	 1 D 1. Similarly, for ˛1 < a, ˛2 < b, one gets in the same way
'.T � ab/ D �1. Thus, one derives Re.'/ D ˛1˛2 when j̨ > 0. One can check
easily that the same result holds when j̨ ¤ 0. Indeed, one can change the signs using
the automorphism � 2 Aut.QŒT �/, �.T / D �T . This way one obtains

Re.'	 / D �Re.'/ (8.17)

where '	 D ' ı � , for ' 2 Hom.QŒT �; S/. Moreover it follows from

�� ı � D .� ˝ id/ ı�� D .id˝ �/ ı�� (8.18)

that

'	1 ��� '2 D .'1 ��� '2/
	 : (8.19)

We still have to consider the case when one of the j̨ ’s vanishes. Assume ˛1 D 0.
If '1.T / D 0, then for any ' 2 '1 ��� '2 one has '.T / D 0 since ��.T / D T ˝ T .
This shows that 0 D !0 is an absorbing element. Then, by using the above change
of signs automorphism (if needed), it is enough to consider the case '1 D !C0 and
'2.T / D 1. One then obtains ˛2 � 0. Let b 2 Q, b > ˛2 and c > 0. Let a > 0,
ab < c. Then, by applying (8.16) we conclude

'.T � ab/ 2 '1.T � a/'2.T /C '1.a/'2.T � b/ D �1:

Thus, one gets '.T � c/ D �1. By (8.8) this gives c � Re.'/ and since c > 0 is arbi-
trary, one gets Re.'/ � 0. But since '2.T / D 1 one obtains '.T / 2 '1.T /'2.T / D 1
for any ' 2 '1 ��� '2. This implies Re.'/ � 0 and one then derives Re.'/ D 0.
Then, .3/ follows.

Lemma 8.6. Let '1; '2 2 Hom.QŒT �; S/, with j̨ D Re.'j / 2 R (j D 1; 2) and
assume ˛1 … NQ. Then

a) '1 ��C '2 D Re�1.˛1 C ˛2/.

b) If ˛2 ¤ 0, one has '1 ��� '2 D Re�1.˛1˛2/.

c) If ˛2 D 0, one has '1 ��� '2 D !s0 where s D sign.˛1/'2.T /.

Proof. Lemma 8.5 determines '1 ��C '2 (resp. '1 ��� '2) if ˛1 C ˛2 … NQ (resp.
˛1˛2 … NQ), since in that case Re�1.˛1C˛2/ (resp. Re�1.˛1˛2/) is reduced to a single
element. To show (1) we can thus assume that ˛1C ˛2 2 NQ. Then j̨ … NQ and 'j can
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be written in the form (8.14) for any choice of t . One can then use Lemma 6.7 to show
that the three '’s with Re.'/ D ˛1C˛2 are in '1��C'2. A similar argument applies to
show (2), since one can choose tj 2 R such that p.T / 7! sign.p..˛1Ct1�/.˛2Ct2�//
yields any given element of Re�1.˛1˛2/.

Finally, to prove (3) we note that if ˛2 D 0 then ' 2 '1 ��� '2 is determined by
'.T / 2 S and this is given by '1.T /'2.T / D sign.˛1/'2.T /.

Lemma 8.6 determines the hyperoperations except when both j̨ 2 NQ. To discuss
thoroughly the case j̨ 2 NQ, we first need to state the following two lemmas.

Lemma 8.7. Let A.X; Y / 2 QŒX; Y � and let j̨ 2 R such that A.˛1; ˛2/ > 0. Then,
there exist polynomials Lj 2 QŒX� and Rj 2 QŒY � such that

A.X; Y / D
X

Lj .X/Rj .Y /; Lj .˛1/ > 0; Rj .˛2/ > 0: (8.20)

Proof. One has

A.X; Y / D
X

an;mX
nY m;

X
an;m˛

n
1˛
m
2 > 0:

We take �n;m > 0 such that 
 D
P
an;m˛

n
1˛
m
2 �

P
�n;m > 0 and write

A.X; Y / D
X

.an;mX
nY m � an;m˛

n
1˛
m
2 C �n;m/C 
:

This shows that it is enough to prove the lemma in the special case

A.X; Y / D aXnY m � b; a˛n1˛
m
2 > b:

In this case one can find �;� 2 Q such that

a.˛n1 � �/ > 0; .˛m2 � �/ > 0; A.˛1; ˛2/ > a.˛
n
1 � �/.˛

m
2 � �/:

Indeed, this follows by using � D ˛n1 � �1, � D ˛m2 � �2 and taking �j with a�1 > 0
and �2 > 0 small enough so that

a�1�2 < A.˛1; ˛2/:

One has the decomposition (8.20)

a.Xn � �/.Y m � �/ D L1.X/R1.Y /; L1.˛1/ > 0; R1.˛2/ > 0:

It is thus enough to look at the remainder

A1.X; Y / D A.X; Y / � a.X
n � �/.Y m � �/:

Then, A1.X; Y / is a polynomial of the form

A1.X; Y / D ˛X
n C ˇY m C ı; A1.˛1; ˛2/ D ˛˛

n
1 C ˇ˛

m
2 C ı > 0:
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Thus, one derives the description

A1.X; Y / D .˛.X
n � ˛n1 /C ı1/C .ˇ.Y

m � ˛m2 /C ı2/; ıj > 0:

which is of the form (8.20) since

A1.X; Y / D L2.X/CR2.Y /; L2.˛1/ > 0; R2.˛2/ > 0:

Lemma 8.8. Let p1 and p2 be two irreducible polynomials in QŒT �. Then a polyno-
mial p.X; Y / belongs to the ideal

J D ¹p1.X/A.X; Y /C p2.Y /B.X; Y / j A;B 2 QŒX; Y �º � QŒX; Y � (8.21)

if and only if p.˛; ˇ/ D 0, 8˛ 2 Z.p1/, ˇ 2 Z.p2/.

Proof. By the Nullstellensatz, it is enough to show that QŒX; Y �=J is a reduced al-
gebra. By construction QŒX; Y �=J ' QŒX�=.p1/˝QŒY �=.p2/ and since pj is irre-
ducible, this is the tensor product of two fields, hence it is reduced.

Proposition 8.9. The hyperaddition ?�C on functions ' 2 Hom.QŒT �; S/ satisfying
the condition Re.'/ 2 NQ \R coincide with the hyperaddition in S � . NQ \R/.

Proof. We first consider the case 'j D !
j̨

. Then, by applying Lemma 6.4 one
gets that !˛1C˛2 is the only element in '1 ��C '2, since its kernel is non trivial.
Using (8.14) one gets, with ˛ D ˛1 C ˛2

!C˛1 C !
�
˛2
D ¹!˛; !

C
˛ ; !

�
˛ º; !C˛ 2 !˛1 C !

C
˛2
; !C˛ 2 !

C
˛1
C !C˛2 : (8.22)

We need to show that there are no other solutions in the last two cases. Let pj .T / 2
QŒT � (j D 1; 2) be two irreducible polynomials with pj . j̨ / D 0 and p0j . j̨ / > 0.
In general, the polynomial q.Z/ obtained in (7.5), i.e. as the resultant in the variable
T of p1.T / and p2.Z � T /, may have ˛1 C ˛2 as a multiple root. We replace q by
the product p D

Q
qj of the irreducible factors qj which appear in the decomposition

q D
Q
q
nj
j of q as a product of powers of prime factors. By construction ˛1 C ˛2

is a simple root of p and by multiplying by a non-zero scalar (if necessary) we can
assume

p0.˛1 C ˛2/ > 0: (8.23)

By applying Lemma 8.8 we deduce a decomposition

p.X C Y / D p1.X/A.X; Y /C p2.Y /B.X; Y /: (8.24)

We want to show in this generality that

A.˛1; ˛2/ > 0; B.˛1; ˛2/ > 0: (8.25)
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We can differentiate (8.24) with respect to X and get

p0.X C Y / D p01.X/A.X; Y /C p1.X/@XA.X; Y /C p2.Y /@XB.X; Y /

and then take X D ˛1 and Y D ˛2 to get

p0.˛1 C ˛2/ D p
0
1.˛1/A.˛1; ˛2/:

Thus, since p0.˛1 C ˛2/ > 0 and p0j . j̨ / > 0, we obtain A.˛1; ˛2/ > 0. The same
argument applies to B.˛1; ˛2/ using @Y . Lemmas 8.7, (8.25) and (8.24) thus give
a decomposition

p.X C Y / D p1.X/
X

Aj .X/Bj .Y /C p2.Y /
X

Cj .X/Dj .Y / (8.26)

with
Aj .˛1/ > 0; Bj .˛2/ > 0; Cj .˛1/ > 0; Dj .˛2/ > 0:

This implies, using Re.'j / D j̨ , that

'1.Aj / D 1; '2.Bj / D 1; '1.Cj / D 1; '2.Dj / D 1:

By using (8.26) we get

'.p/ 2 '1.p1/C '2.p2/; 8' 2 '1 ��C '2

and by Corollary 8.3 (4), one concludes

!˛1 C !
C
˛2
D !C˛ ; !C˛1 C !

C
˛2
D !C˛ :

This completes the table of hyperaddition.

Proposition 8.10. The hypermultiplication ?�� on functions ' 2 Hom.QŒT �; S/ such
that Re.'/ 2 NQ \R is given, for j̨ ¤ 0 (j D 1; 2), by

!s1˛1 ?�� !
s2
˛2
D ¹!s˛1˛2 j s 2 sign.˛2/s1 C sign.˛1/s2 � Sº; 8sj 2 S: (8.27)

For ˛1 D 0 and any value of ˛2 2 NQ \R, one has

!
s1
0 ?�� !

s2
˛2
D !s0; s D s1!

s2
˛2
.T /: (8.28)

Proof. By representing !
sj
j̨

in the form (8.14), one gets that all elements of the right-
hand side of (8.27) belong to the left-hand side. To obtain the other inclusion, we first
assume that j̨ > 0. We proceed as in the proof of Proposition 8.9 and obtain a poly-
nomial with simple roots which admits as roots all the products g1.˛1/g2.˛2/ of the
conjugates of the j̨ . By using the same notation as before, one gets a decomposition

p.XY / D p1.X/A.X; Y /C p2.Y /B.X; Y /: (8.29)
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Since j̨ > 0, the same proof using differentiation shows that (8.25) holds. One then
gets

'.p/ 2 '1.p1/C '2.p2/; 8' 2 '1 ��� '2

which shows the required conclusion. By using (8.19), one then obtains the gen-
eral case, when j̨ ¤ 0 have arbitrary signs. Finally (8.28) follows from ��.T / D

T ˝ T .

Incidentally, we note that the product A1 � A2 of two canonical hypergroups
.A1;C1/ and .A2;C2/ endowed with the hyperaddition

.
1; 
2/C .�1; �2/ D ¹.˛; ˇ/; ˛ 2 
1 C1 �1; ˇ 2 
2 C2 �2º (8.30)

is a canonical hypergroup.

Lemma 8.11. Let A be an abelian group, and B � A be a subgroup. Let C be the
quotient of the product A � S by the equivalence relation

.˛; s/ � .˛; 0/ 8˛ … B: (8.31)

We let � W A � S ! C be the quotient map and endow A � S with the hyperaddi-
tion (8.30). Then, with the following hyperlaw, C is a canonical hypergroup:

x C y D ¹�.
 C �/; �.
/ D x; �.�/ D yº: (8.32)

Proof. For x D .˛; s/ and y D .ˇ; t/, the only case when one needs to take the union
on representatives 
 with �.
/ D x and � with �.�/ D y is when both ˛; ˇ … B but
˛ C ˇ 2 B . Note also that for the equivalence relation (8.31) the subset

[.
 C �/; �.
/ D x; �.�/ D y (8.33)

is saturated. Indeed, if ˛ C ˇ 2 B there is nothing to prove since the equivalence
is trivial. Thus one can assume ˛ C ˇ … B and say ˛ … B . Then, one can choose

 D .˛; s/ with all values s 2 S so that the whole fiber above ˛ C ˇ appears in 
 C �.

This produces the associativity of the hyperaddition in C D .A� S/= � (cf. (8.31))
by using the associativity in A � S. The uniqueness of the additive inverse follows
from �.
/ D 0 ) 
 D 0. Finally, the reversibility property follows from (8.33) by
using (8.31).

We denote by A �Bc S the canonical hypergroup obtained from Lemma 8.11.

Theorem 8.12. The functions Dfinite.S/ form under hyperaddition ?�C a canonical
hypergroup isomorphic to R � NQc S.

The subset D�finite.S/ D ¹' 2 Dfinite.S/ j Re.'/ ¤ 0º, with the hypermultiplication
?�� is a canonical hypergroup isomorphic to R� � NQc S.
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Proof. The first statement is obtained using Lemma 8.6(1) and Proposition 8.9. To
show the second statement, we introduce the map

� W D�finite.S/! R� � NQc S; �.!s˛/ D .˛; sign.˛/s/: (8.34)

Then, Lemma 8.6(2) and (8.27) show that � is an isomorphism.

Remark 8.13. The set D0
finite.S/ D ¹' 2 Dfinite.S/jRe.'/ D 0º forms an ideal of

the hyperstructure Dfinite.S/ with D0
finite.S/ ' S. The quotient hyperstructure is iso-

morphic to the field of real numbers:

Dfinite.S/=S ' R: (8.35)

9 The hyperring of adèle classes and its arithmetic

The theory of hyperrings allows one to understand the additive structure of the mul-
tiplicative monoid AK=K

� of adèle classes of a global field K and to obtain a new
algebraic understanding of the adèle class space as a K-algebra. Indeed, by Theo-
rem 4.2 and Corollary 4.3, the quotient HK D AK=K

� of the commutative ring AK

by the action by multiplication of K�, is a hyperring and the Krasner hyperfield K
is embedded in HK. In short, HK is the K-algebra HK D AK ˝K K, obtained by
extension of scalars using the unique homomorphism K! K.

In this section we shall review the most important arithmetic properties of the hy-
perring HK. The set P.HK/ of the prime elements of the hyperring HK inherits
a natural structure of groupoid with the product given by multiplication and units the
set of places of K. The idèle class group CK D H�K acts by multiplication on P.HK/.
For a global field of positive characteristic, the action of the units H�K on the prime
elements of HK corresponds, by class-field theory, to the action of the abelianized
Weil group on the space of valuations of the maximal abelian extension of K, i.e.
on the space of the (closed) points of the corresponding projective tower of algebraic
curves. This construction determines the maximal abelian cover of the projective al-
gebraic curve with function field K. Then, the sub-groupoid of loops of the funda-
mental groupoid associated to the afore mentioned tower is equivariantly isomorphic
to P.HK/.

When char.K/ D 0, the above geometric interpretation is no longer available. On
the other hand, the arithmetic of the hyperring HK continues to hold and the groupoid
P.HK/ appears to be a natural substitute for the above groupoid of loops since it also
supports an interpretation of the explicit formulas of Riemann–Weil.

9.1 The space of closed prime ideals of HK

Let K be a global field and †.K/ the set of places of K. The one-to-one correspon-
dence between subsets Z � †.K/ and closed ideals of AK (for the locally compact
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topology) given by

Z 7! JZ D ¹x D .xv/ 2 AK j xw D 0; 8w 2 Zº: (9.1)

determines, when Z D ¹wº (w 2 †.K/), a one-to-one relation between the places of
K and the prime, closed ideals of the hyperring HK D AK=K

�

†.K/ 3 w $ pw D ¹x 2 HK j xw D 0º � Spec.HK/: (9.2)

Notice that the ideal pw is well defined since the condition for an adèle to vanish at
a place is invariant under multiplication by elements in K�.

The additive structure of HK plays a key role in the above relation since when
viewed as a multiplicative monoid, the adèle class space AK=K

� has many more prime
ideals than when it is viewed as a K-algebra. In fact, in a monoid any union of prime
ideals is still a prime ideal and this fact implies that all subsets of the set of places
determine a prime ideal of the monoid of adèle classes.

9.2 The groupoid of the prime elements of HK

In a hyperring R, an element a 2 R is said to be prime if the ideal aR is a prime
ideal. Let P.HK/ be the set of prime elements of the hyperring HK D AK=K

�. Each
prime element a 2 P.HK/ determines a principal, prime ideal p D aHK � HK. The
following result establishes a precise description of such ideals of HK. We refer to [8]
Theorem 7.9 for further details.

Theorem 9.1. 1/ Any principal prime ideal J D aHK of HK is equal to pw for
a unique place w 2 †.K/.

2/ The group CK D A�K=K
� acts transitively on the generators of the principal

prime ideal pw .

3/ The isotropy subgroup of any generator of the prime ideal pw is K�w � CK.

Let s W P.HK/ ! †K be the map that associates to a prime element a 2 HK the
unique placew such that pw D aHK. Then P.HK/with range and source maps equal
to s and partial product given by the product in the hyperring HK, is a groupoid. The
product of two prime elements is a prime element only when the two factors generate
the same ideal, i.e. sit over the same place. Moreover over each place v there exists
a unique idempotent pv 2 P.HK/ (i.e. p2v D pv).

9.3 The groupoid of loops and P.HK/ in characteristic p ¤ 0

Let K be a global field of characteristic p > 0 i.e. a function field over a constant
field Fq � K. We fix a separable closure NK of K and let Kab � NK be the maximal
abelian extension of K. Let NFq � NK be the algebraic closure of Fq . We denote by
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W ab � Gal.Kab W K/ the abelianized Weil group, i.e. the subgroup of elements of
Gal.Kab W K/ whose restriction to NFq is an integral power of the Frobenius.

Let Val.Kab/ be the space of all valuations of Kab. By restriction to K � Kab one
obtains a natural map

p W Val.Kab/! †.K/; p.v/ D vjK: (9.3)

By construction, the action of Gal.Kab W K/ on Val.Kab/ preserves the map p.
Let w 2 †.K/. Then, it follows from standard results of class-field theory that the

abelianized Weil group W ab acts transitively on the fiber p�1.w/ of p and that the
isotropy subgroup of an element in the fiber p�1.w/ coincides with the abelianized
local Weil group W ab

w � W ab.
We now implement the geometric language. Given an extension NFq � E of tran-

scendence degree 1, it is a well-known fact that the space Val.E/ of valuations of E
coincides with the set of (closed) points of the unique projective nonsingular alge-
braic curve with function field E. Moreover, one also knows (cf. [19] Corollary 6.12)
that the category of nonsingular projective algebraic curves and dominant morphisms
is equivalent to the category of function fields of dimension one over NFq . One also
knows that the maximal abelian extension Kab of K is an inductive limit of extensions
E of NFq of transcendence degree 1. Thus the space Val.Kab/ of valuations of Kab,
endowed with the action of the abelianized Weil group W ab � Gal.Kab W K/, inherits
the structure of a projective limit of projective nonsingular curves. This construction
determines the maximal abelian cover � W X ab ! X of the non singular projective
curve X over Fq with function field K.

Let � W QX ! X be a Galois covering of X with Galois group W . The fundamental
groupoid of � is by definition the quotient …1 D . QX � QX/=W of QX � QX by the
diagonal action of W on the self-product. The (canonical) range and source maps: r
and s are defined by the two projections

r. Qx; Qy/ D x; s. Qx; Qy/ D y: (9.4)

Let us consider the subgroupoid of loops, i.e.

…01 D ¹
 2 …1 j r.
/ D s.
/º: (9.5)

Each fiber of the natural projection r D s W …01 ! X is a group. Moreover, if W is an
abelian group one defines the following natural action of W on …01

w 	 . Qx; Qy/ D .w Qx; Qy/ D . Qx;w�1 Qy/: (9.6)

We consider the maximal abelian cover � W X ab ! X of the non singular projective
curve X over Fq with function field K. We view X as a scheme over Fq . In this case,
we let W D W ab � Gal.Kab W K/ be the abelianized Weil group. Even though the
maximal abelian cover � W X ab ! X is ramified, its loop groupoid…ab

1 .X/
0 continues
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to make sense. Since the two projections from X ab � X ab to X are W -invariant,
…ab
1 .X/

0 is the quotient of the fibered product X ab �X X ab by the diagonal action
of W . We identify the closed points of X ab �X X

ab with pairs of valuations of Kab

whose restrictions to K are the same. The following refinement of Proposition 8.13
of [11] holds:

Theorem 9.2. Let K be a global field of characteristic p ¤ 0, and let X be the corre-
sponding non-singular projective algebraic curve over Fq .

� The loop groupoid…ab
1 .X/

0 is canonically isomorphic to the groupoid P.HK/ of
prime elements of the hyperring HK D AK=K

�.
� The above isomorphism …ab

1 .X/
0 ' P.HK/ is equivariant for the action of W

on…ab
1 .X/

0 and the action of the units H�K D CK on prime elements by multipli-
cation.
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