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1. Introduction

It is a great pleasure to present these lectures in honor of the founder of class
field theory. The topic of my lectures establishes a deep connection between
the theory founded by Teiji Takagi in arithmetic and the Tomita–Takesaki the-
ory in analysis, due to two other famous Japanese mathematicians, which was
the starting point of my work on the classification of factors. Moreover further
work in progress ([15]) on this relation uses in a crucial manner the work of
K. Iwasawa on p-adic L-functions.

The origin of the link between class field theory and type III factors is a
system of Quantum Statistical Mechanics: the BC (Bost–Connes)-system [4],
whose properties illustrate the theory of type III factors in operator algebras and
the KMS (Kubo–Matrin–Schwinger) condition in physics, while the associated
noncommutative space, the adèle class space, is a direct descendant of the class
field idea through the filiation

Ideal classes �! Idèle class group �! Adèle class space.

The interrelationship between the fields of noncommutative geometry and
arithmetic originated in [4], where an important link was established between
the operator algebra formalism of quantum statistical mechanics and arithmetic.
The Riemann zeta function is the partition function of the BC-system whose
phase transitions with spontaneous symmetry breaking yield the class field the-
ory isomorphism. In §2 we recall briefly the basic properties of the BC-system
and overview the presentation of the integral BC-system as defined in [17]. The
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new results presented in these notes are contained in §3, they are joint work
with C. Consani, and will appear in detailed form in [15]. We show that for
each prime p there is a strong relation between the integral BC-system and the
universal Witt ring W0. NFp/ of an algebraic closure NFp of Fp. As shown in [39]
the abelian part of the integral BC-system is naturally a ƒ-ring whose Frobe-
nius endomorphisms agree with the basic endomorphisms defining the system.
In §3 we prove that, if one drops the p-component, the full structure of the in-
tegral BC-system is completely described as W0. NFp/ with a precise dictionary
expressing the key ingredients �n and Q�n of the integral BC-system as respec-
tively the Frobenius Fn and Verschiebung Vn on W0. NFp/. Here, the Witt functor
W0 is a dense subfunctor of the big Witt ring functor W and it is defined as the
Grothendieck ring of the category of endomorphisms, whose objects are pairs
.E; f / for f an endomorphism of the finite projective module E over a (com-
mutative) ring A. The completion process from W0. NFp/ to W. NFp/, together
with the explicit isomorphism coming from the Artin–Hasse exponential

W. NFp/ D .Wp1. NFp//
I.p/ (1)

(where Wp1 is the Witt functor using the set of powers of the prime p while
I.p/ � N is the set of integers which are prime to p) yield an indecompos-
able p-adic representation of the integral BC-system. This representation �� is
parameterized by an embedding

� W NF�
p �! Qcyc (2)

of the multiplicative group NF�
p as the group �.p/ � � � Q=Z of roots of unity,

in the cyclotomic field Qcyc, whose order is prime to p. The representations ��

play, in the p-adic case, the same role as the positive energy irreducible com-
plex representations of the BC-system which intertwine the class field theory
isomorphism. In §3.6 we show that the analogy with the complex case goes
much further and we construct an analogue in the p-adic case of the partition
function and the KMSˇ states using the theory of p-adic L-functions. We thus
obtain the p-adic analogue of the results of [20] for function fields. One should
also acknowledge an important nuance with the complex case, i.e., the pres-
ence of an added symmetry at non-zero temperature, due to the invariance of
the states under the natural involution of Qcyc replacing each root of unity by its
inverse.

A central problem in the theory of L-functions is the generalized Riemann
conjecture on the location of their zeros. So far the only successful methods
are due to the implementation of algebraic geometry in positive characteristic.
The lack of a geometric analogue, in characteristic zero, of the curve underlying
global fields of positive characteristic has prevented to transpose the proof of
A. Weil. This situation is slowly changing under the influence of noncommuta-
tive geometry and also of the quest for the “absolute arithmetic” starting from
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ideas of Steinberg [48], Tits [50] and Krasner [31] in the 50’s, and of Kurokawa
[33] and Manin [38] in the 90’s.

In [8], [16], [40], it was shown that the dual of the BC-system gives a trace
formula interpretation of the Riemann–Weil explicit formulas and a spectral
realization of the zeros of the Riemann zeta-function and of L-functions with
Grössencharakters. This interpretation has recently been refined at the concep-
tual level in [11] where the spectral realization is obtained as the first coho-
mology group of a sheaf over a very basic geometric space: the projective line
P1

F1
over the “absolute point” Spec .F1/. In several recent research papers (cf.

[17], [10], [11], [12], [13], [14]) it is observed that some of the main features
of the rich interconnection between noncommutative geometry and arithmetic
originate in a basic algebro-geometric framework that we designate as “abso-
lute”. Some combinatorial formulas, like the equation supplying the cardinal-
ity of the set of rational points of a Grassmannian over a finite field Fq , are
known to be rational expressions keeping a meaningful value also when q D 1.
These results motivate the search for a mathematical object that is expected
to be a non-trivial limit of Galois fields Fq , for q D 1. The goal is to define
an analogue, for number fields, of the geometry underlying the arithmetic the-
ory of the function fields and a geometric analogue of the “curve” underly-
ing the Weil proof of the Riemann hypothesis for function fields. In [11] we
showed how to determine the counting function N.q/, defined as a distribution
on Œ1;1/ which plays for K D Q the same role as the Weil counting func-
tion does for a field K of functions on a curve Y over Fp (cf. [38], [47]). The
Weil function determines the number of points over various extensions of Fp,
#Y.Fq/ D N.q/ D q � P

˛ ˛
r C 1; q D pr , where the numbers ˛’s are

the complex roots of the characteristic polynomial of the Frobenius endomor-
phism acting on the étale cohomology H 1.Y ˝ NFp;Q`/ of the curve (` ¤ p).
As recalled in §4.1, we have shown that the distribution N.q/ associated to the
Riemann zeta function is described by a similar formula

N.u/ D u � d

du

�X
�2Z

order .�/
u�C1

�C 1

�
C 1

and is positive on .1;1/ while having all the expected properties such as the
correct value N.1/ D �1 for the Euler characteristic. Moreover, in §4.2, we
explain (cf. [14]) how to implement the trace formula understanding of the ex-
plicit formulas in number theory, to express the counting function N.q/ as an
intersection number involving the scaling action of the idèle class group on the
adèle class space. This is done using a Lefschetz formula and reveals a feature
which is specific to characteristic zero: in the number field case the contribution
of the archimedean places cannot be understood in a naive manner by counting
a number of points but involves a transversality factor measuring the transver-
sality of the action of the idèle class group with respect to periodic orbits. The
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periodic orbits cannot be considered in isolation and must be immersed in the
ambient adèle class space. This gives a precious hint and shows that the role
of ergodic theory and noncommutative geometry is indispensable. In the earlier
work on the adèle class space this space was studied as a noncommutative space
but its algebraic structure has only emerged very recently. First as a monoid (cf.
[11]) and more recently (cf. [13]) as a hyperring in the sense of Krasner ([31]).
In [13] we have shown that the prime elements of the hyperring HK of adèle
classes of a global field K form a groupoid. Moreover when K is a function
field associated to a curve X over a finite field, this groupoid is canonically
isomorphic to the loop groupoid of the abelian cover of X corresponding the
maximal abelian extension of K.

The basic problem now is to construct a geometric counterpartX of the adèle
class space HQ (endowed with the natural action of the idèle class group CQ)
in which the points v 2 X are concretely realized as valuations and the Galois
ambiguity is completely respected, without making an artificial choice of a base
point over each place. The relation between the sought for geometric space X
and the adèle class space should be of the same nature as the relation between
the two sides of the class field theory isomorphism.

This problem is intimately related to noncommutative geometry in the sense
of foliation spaces, and the original Lefschetz formula of Guillemin [23] in that
context, which motivated our original approach in [8]. As we shall explain in
§4.4 it is also related to the question of A. Weil (cf. [54]) of finding a Galois in-
terpretation of the connected component of the identity in the idèle class group,
and that of finding a canonical construction of the algebraic closure of the finite
fields Fp (cf. [35]). We shall give in §4.4 a specific way of constructing the ge-
ometric counterpart of the adèle class space HQ with the remaining problem of
explicitly comparing the constructions which a priori depend upon the choice
of a prime. In the last section of these notes we shall explain, as a modest step
towards the above goals, that the Witt construction extends (cf. [9]) to the case
of characteristic one. This involves the notion of entropy as it enters in ergodic
theory and also ties in with idempotent analysis [29], [37] and the approach
recently developed by O. Viro [52] for tropical geometry using hyperfields.

2. The BC-system

The BC-system [4] is a system of quantum statistical mechanics whose partition
function is the Riemann zeta function and which exhibits phase transitions with
spontaneous symmetry breaking while the zero temperature states implement
the class field theory isomorphism for the global field Q.
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2.1. Hecke algebra

The origin of the BC-system comes from the extension of the functor � from
discrete groups � to finite von Neumann algebras N which associates to � the
commutant �.�/ of the right translations by � in the Hilbert space `2.�/. To
go beyond the type II case one extends � to pairs .�; �0/ where �0 � � is an
almost normal subgroup, i.e., the orbits of the left action of �0 on �=�0 are all
finite. The Hecke algebra HQ.�; �0/ is by definition the convolution algebra of
functions of finite support

f W �0n� �! Q; (3)

which fulfill the �0-invariance condition

f .��0/ D f .�/; 8� 2 �; 8�0 2 �0; (4)

so that f is really defined on �0n�=�0. The convolution product is then given
by

.f1 � f2/.�/ D
X

�0n�

f1.��
�1
1 /f2.�1/: (5)

One can then construct the left representation of the Hecke algebra HC.�; �0/

in `2.�0n�/, and its weak closure is the commutant of the action of � . More-
over the state given by the canonical separating vector gives a canonical time
evolution �t . It turns out that this time evolution preserves the dense subalgebra
HC.�; �0/ and has the explicit form (cf. [4])

�t .f /.�/ D
�L.�/
R.�/

��it
f .�/; 8� 2 �0n�=�0; (6)

where the integer valued functions L and R on the double coset space are given
respectively by

L.�/ D cardinality of left �0 orbit of � in �=�0; R.�/ D L.��1/: (7)

2.2. The integral BC-system

Let us consider the “ax C b” algebraic group P , i.e., the functor which to any
commutative ring R assigns the group PR of 2 by 2 matrices over R of the form

PR D
n�
1 b

0 a

�
I a; b 2 R; a invertible

o
: (8)

By construction PC
Z � PC

Q is an inclusion �0 � � of countable groups, where

PC
Z and PC

Q denote the restrictions to a > 0 and it fulfills the commensurability
condition

The orbits of the left action of �0 on �=�0 are all finite. (9)
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The corresponding Hecke algebra H .�; �0/ can in fact be defined over Z

([17]) and we now give its presentation by generators and relations. One con-
siders the group ring ZŒQ=Z	 of the group Q=Z of abstract roots of unity. One
lets e.r/ 2 ZŒQ=Z	, be the canonical generators for r 2 Q=Z. For each n 2 N,
one defines endomorphisms �n of the group ring ZŒQ=Z	 by �n.e.�// D e.n�/

and additive maps Q�n by

Q�n W ZŒQ=Z	 �! ZŒQ=Z	; Q�n.e.�// D
X

n� 0D�

e.� 0/: (10)

We recall from [17], Proposition 4.4, the following:

Proposition 2.1. The maps �n define endomorphisms of ZŒQ=Z	 which fulfill
the following relations with the maps Q�m:

�nm D �n�m; Q�mn D Q�m Q�n; 8m; n 2 N; (11)

Q�m.�m.x/y/ D x Q�m.y/; 8x; y 2 ZŒQ=Z	; (12)

�c. Q�b.x// D .b; c/ Q�b0.�c0.x//; b0 D b=.b; c/; c0 D c=.b; c/; (13)

where .b; c/ denotes the greatest common divisor of b and c.

Note that taking b D c D n in (13) gives

�n. Q�n.x// D nx; 8x 2 ZŒQ=Z	: (14)

On the contrary, if we take b D n and c D m to be relatively prime we get

�n ı Q�m D Q�m ı �n: (15)

The integral BC-algebra HZ D ZŒQ=Z	 Ì Q� N is the algebra generated by the
group ring ZŒQ=Z	, and by the elements Q�n and ��

n, with n 2 N, which satisfy
the relations:

Q�nx�
�
n D Q�n.x/;

��
nx D �n.x/�

�
n;

x Q�n D Q�n�n.x/;

(16)

where Q�m; m 2 N is defined in (10), as well as the relations

Q�nm D Q�n Q�m; 8n;m;
��

nm D ��
n�

�
m; 8n;m;

��
n Q�n D n;

Q�n�
�
m D ��

m Q�n; .n;m/ D 1:

(17)

After tensoring by Q, the Hecke algebra HQ D HZ ˝Z Q has a simpler explicit
presentation with generators �n; �

�
n; n 2 N and e.r/, for r 2 Q=Z, satisfying

the following relations (and their adjoints)
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� ��
n�n D 1, for all n 2 N,

� �k�n D �kn, for all k; n 2 N,
� �n�

�
m D ��

m�n; .n;m/ D 1,
� e.0/ D 1; e.r/� D e.�r/, and e.r/e.s/ D e.r C s/, for all r; s 2 Q=Z,
� For all n 2 N and all r 2 Q=Z,

�ne.r/�
�
n D 1

n

X
nsDr

e.s/: (18)

2.3. Phase transition with spontaneous symmetry breaking

After tensoring by C and completion one gets a C �-algebra NHC with a natural
time evolution �t ([4], [19] Chapter III).

Suppose given a C �-dynamical system .A ; �t /, that is, a C �-algebra A
together with a 1-parameter group of automorphisms � W R ! Aut .A /.

Definition 2.2. For a given 0 < ˇ < 1, a state ' on the unital C �-algebra A
satisfies the KMS condition at inverse temperature ˇ if for all a; b 2 A , there
exists a function Fa;b.z/ which is holomorphic on the strip (Fig. 1)

Iˇ D fz 2 C j 0 < =.z/ < ˇg; (19)

continuous on the boundary @Iˇ and bounded, with the property that for all
t 2 R

Fa;b.t/ D '.a�t .b// and Fa;b.t C iˇ/ D '.�t .b/a/: (20)

The set †ˇ of KMS states at ˇ < 1 is a compact convex set for the weak
topology:

'n ! ' () 'n.a/ ! '.a/; 8a 2 A :

Thus, it makes sense to consider the set Eˇ of its extremal points. Moreover one
has

Fig. 1. The strip Iˇ in the KMS condition
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� A KMSˇ state for 0 < ˇ < 1 is extremal if and only if the corresponding
GNS representation is factorial.

� For any 0 < ˇ < 1, the set †ˇ of KMSˇ states is a convex compact
Choquet simplex.

We apply this to the BC-system, i.e., the C �-algebra NHC, whose time evo-
lution �t fixes the elements of the group ring of Q=Z and fulfills

�t .�n/ D nit�n; 8n 2 N; t 2 R: (21)

Theorem 2.3. The unique KMS state above critical temperature is

'ˇ .e.a=b// D b�ˇ
Y

p prime, pjb

�1 � pˇ�1

1 � p�1

�
;

and the extremal KMS states below critical temperature are

'ˇ;�.e.a=b// D Tr .��.e.a=b//e
�ˇH /

Tr .e�ˇH /
D 1


.ˇ/

1X
nD1

n�ˇ�.
n
a=b/; (22)

where �� is the representation of the algebra A on the Hilbert space H D
`2.N/ given by

��.�n/�m D �nm; ��.e.a=b//�m D �.
m
a=b/�m; (23)

where � 2 OZ� determines an embedding in C of the cyclotomic field Qcyc gen-
erated by the abstract roots of unity.

3. The Witt rings and the BC-system at p-adic places

We shall now display the relation between the Witt ring W0. NFp/ of an algebraic
closure of the finite field Fp and the BC-system. We first need to recall the
construction of the Witt functors W0.A/;W.A/;Wp1.A/. For more details we
refer to [55], [41], [5], [25], [3], [45], [26].

3.1. The Witt ring W0.A/

The algebraic properties of the Witt functor A 7! W.A/, from rings to rings,
are simple to understand in terms of a dense subring W0.A/ � W.A/ which
is functorially defined as the Grothendieck group which classifies the endomor-
phisms of finite projective modules over the given commutative ring A with
unit. One considers the category EndA whose objects are pairs .E; f / where E
is a finite projective module over A and f 2 EndA.E/ is an endomorphism of
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E. The morphisms in the category commute with the endomorphisms f . The
following operations of direct sum and tensor product

.E1; f1/˚ .E2; f2/ D .E1 ˚E2; f1 ˚ f2/;

.E1; f1/˝ .E2; f2/ D .E1 ˝E2; f1 ˝ f2/
(24)

turn the Grothendieck group K0.EndA/ into a (commutative) ring. The pairs of
the form .E; f D 0/ generate the ideal K0.A/ � K0.EndA/. We denote the
quotient ring by W0.A/

W0.A/ D K0.EndA/=K0.A/: (25)

By construction W0 is a functor from the category Ring of commutative rings
with unit to itself. The key additional structures are given by

(1) The Teichmüller lift which is a multiplicative map � W A ! W0.A/.
(2) The Frobenius endomorphisms Fn for n 2 N.
(3) The Verschiebung (shift) additive functorial endomorphisms Vn; n 2 N.
(4) The ghost components ghn W W0.A/ ! A for n 2 N.

They are defined as follows:
(1) The Teichmüller lift is simply given by the map A 3 f 7! .A; f /.
(2) For n 2 N, the following operations on EndA induce endomorphisms in

W0.A/ which are the Frobenius endomorphisms

Fn.E; f / D .E; f n/: (26)

(3) The Verschiebung maps Vn are described by the following operation on
matrices:

Vn.f / D

0BBBB@
0 0 � � � � � � � � � 0 f

1 0 0 � � � � � � 0 0

0 1 0 � � � � � � 0 0

� � � � � � � � � � � � � � � � � � � � �
0 0 0 � � � 1 0 0

0 0 0 0 � � � 1 0

1CCCCA : (27)

(4) The ghost components are given by

ghn W W0.A/ �! A; ghn.E; f / D Trace .f n/: (28)

One has

Vnm D Vn ı Vm D Vm ı Vn; Fnm D Fn ı Fm D Fm ı Fn: (29)

In order to get familiar with this construction one can check the following propo-
sition:

Proposition 3.1. Let A be a commutative ring and x; y 2 W0.A/.
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(1) Fn ı Vn.x/ D nx.
(2) Vn.Fn.x/y/ D xVn.y/.
(3) If m is prime to n, one has Vm ı Fn D Fn ı Vm.
(4) For n 2 N one has Vn.x/Vn.y/ D nVn.xy/.
(5) Fn.�.f // D �.f n/.
(6) ghn.Fm.f // D ghnm.f /.
(7) ghn.Vm.f // D m ghn=m.f / ifm divides n and ghn.Vm.f // D 0 otherwise.

Let ƒ.A/ WD 1C tAŒŒt 		. The characteristic polynomial defines a map

L W W0.A/ �! ƒ.A/; L.E; f / D det.1E � tf /�1; (30)

and by a fundamental result of Almkvist ([2] Main Theorem), the map L is
always injective and its image is the subset ofƒ.A/ whose elements are rational
fractions

Range .L/ D f.1C a1t C � � � C ant
n/=.1C b1t C � � � C bnt

n/ j aj ; bj 2 Ag:

3.2. The big Witt ring W.A/

Both the ring structure and the four additional structures of the functor W0

extend “by continuity” to ƒ.A/ WD 1C tAŒŒt 		 using the map L to view W0 as
a subfunctor of the completion W. As a functor to the category Sets of sets, W

coincides with A 7! ƒ.A/ WD 1 C tAŒŒt 		. Under the map L of (30), one can
easily translate (cf. [55], [41], [5])

� The addition in W0.A/ by

L.f ˚ g/ D L.f /L.g/; 8f; g 2 W0.A/: (31)

� The Teichmüller lift which gives

L.�.f // D .1 � tf /�1 2 ƒ.A/: (32)

� The shift Vn

L.Vn.f //.t/ D L.f /.tn/: (33)

� The ghost components

1X
1

ghn.f /t
n D t

d

dt
log.L.f .t///: (34)
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This makes it clear how to extend the addition, the Teichmüller lift, the shifts
and the ghost components to the completion ƒ.A/. The corresponding product
? on ƒ.A/ is uniquely determined by functoriality and requiring that the ghost
components define ring homomorphisms. It is given by explicit polynomials
with integral coefficients of the form�

1C
X

ant
n
�
?
�
1C

X
bnt

n
�

D 1C a1b1t C .a2
1b

2
1 � a2b

2
1 � a2

1b2 C 2a2b2/t
2 C .a3

1b
3
1 � 2a1a2b

3
1

C a3b
3
1 � 2a3

1b1b2 C 5a1a2b1b2 � 3a3b1b2 C a3
1b3 � 3a1a2b3

C 3a3b3/t
3 C � � � :

Finally as shown in [5] the Frobenius Fn is given by the norm map Nn from
AŒŒt 		 to AŒŒtn		 � AŒŒt 		 composed with the change of variables tn 7! t . Thus

NnŒf 	 D Fn.f /.t
n/; 8f 2 ƒ.A/: (35)

3.3. Witt vectors and Wp1.A/

Every element f .t/ 2 ƒ.A/ can be written uniquely as an infinite product

f .t/ D
Y
.1 � znt

n/; zn 2 A; 8n:
Passing to the inverse this shows that the following map is a bijection from the
set W.A/ of sequences .xn/ of elements of A to ƒ.A/

'A W W.A/ �! ƒ.A/ WD 1C tAŒŒt 		;

x D .xn/n2N 7�! fx.t/ D
Y
N

.1 � xnt
n/�1: (36)

In other words any element of ƒ.A/ can be uniquely written as

f D
X

Vn.�.xn//: (37)

The “Witt vector coordinates” allow one to express the ghost components quite
simply as

ghn..xn// D
X
d jn

dx
n=d

d
: (38)

Using this formula one can compute the universal polynomials which express
the addition and multiplication in terms of the Witt vector coordinates. These
operations are uniquely defined by functoriality and the requirement that the
ghost coordinates define ring homomorphisms. Formula (38) shows that the n-
th addition and multiplication polynomials�S;n; �P;n are polynomials that only
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involve the xd and yd with d a divisor of n. Thus, for a truncation set N � N,
i.e., a subset of N which contains every positive divisor of each of its elements,
one associates the truncated functor WN W Ring ! Ring, where one only
retains the Witt components with an index n 2 N . This applies in particular
for N D fpn j n 	 0g where p is a prime number, so the p-adic Witt vectors
Wp1.A/ are a functorial quotient of the big Witt vectors (one similarly obtains
Wpn.A/ as the p-adic Witt vectors of length n C 1 and Wn.A/ as the Witt
vectors of length n).

For N � N a truncation set, and n 2 N such that nN � N , the shift is the
additive map given by

Vn W WN .A/ �! WN .A/;

Vn..ad jd 2 N// D .a0
mjm 2 N/I a0

m D
�
ad if m D nd

0 otherwise:

At the level of the Witt vector components xj the Frobenius Fn is given by
polynomials with integral coefficients and for instance the first 5 components of
F3.x/ are

F3.x/1 D x3
1 C 3x3;

F3.x/2 D x3
2 � 3x3

1x3 � 3x2
3 C 3x6;

F3.x/3 D �3x6
1x3 � 9x3

1x
2
3 � 8x3

3 C 3x9;

F3.x/4 D �3x9
1x3 C 3x3

1x
3
2x3 � 18x6

1x
2
3 C 3x3

2x
2
3 � 36x3

1x
3
3

� 24x4
3 C x3

4 � 3x3
2x6 C 9x3

1x3x6 C 9x2
3x6 � 3x2

6 C 3x12;

F3.x/5 D �3x12
1 x3 � 18x9

1x
2
3 � 54x6

1x
3
3 � 81x3

1x
4
3 � 48x5

3 C x3
5 C 3x15:

One has ghm.Fn.x// D ghmn.x/ and the Witt vector component .Fn.x//m
only depends on the Witt vector components xd where d is a divisor of mn.
Note that when p is a rational prime one has (cf. [42] Proposition 5.12)

Fp.x/m 
 xp
m .mod pA/: (39)

3.4. The BC-system and W0. NFp/

The abelian part of the integral BC-system is naturally (cf. [39]) aƒ-ring whose
Frobenius endomorphisms agree with the basic endomorphisms �n. Our first
goal is to relate this ƒ-ring with the canonical ƒ-ring W0. NFp/ for each prime
p. Thus we let p be a prime, and let Xp be the space of embeddings

� W NF�
p �! C� (40)



14 A. Connes

of the multiplicative group NF�
p as the group �.p/ � � � Q=Z of roots of unity

in C whose order is prime to p. Let r be the retraction

r W ZŒ�	
id˝������! ZŒ�.p/	

associated to the augmentation � of ZŒ�p1 	 in the decomposition

ZŒ�	 D ZŒ�.p/	˝ ZŒ�p1 	;

where �p1 is the group of roots of unity whose order is a power of p. The
relation between W0. NFp/ and ZŒQ=Z	 is given by the following:

Theorem 3.2. To each � as in (40), corresponds a canonical isomorphism Q�

W0. NFp/
Q����! ZŒ�.p/	 � ZŒ�	:

The Frobenius Fn and Verschiebung maps Vn of W0. NFp/ are obtained by re-
striction of the endomorphisms �n and maps Q�n of ZŒ�	 D ZŒQ=Z	 by the
formulas

Q� ı Fn D �n ı Q�; Q� ı Vn D r ı Q�n ı Q�: (41)

This theorem shows that the integral BC-system with its full structure is, if
one drops the p-component, completely described as W0. NFp/. As a corollary
of the above Theorem one gets:

Theorem 3.3. Let � 2 Xp. The following formulas define a representation ��

of the integral BC-system HZ on W0. NFp/,

�� .x/ D Q��1.r.x//; �� .�
�
n/ D Fn; �� . Q�n/ D Vn (42)

for all  2 W0. NFp/; x 2 ZŒQ=Z	 and n 2 N.

3.5. W. NFp/ and p-adic representations of the BC-system

Now since W0. NFp/ is only a dense subring of the ring W. NFp/ of big Witt vec-
tors on NFp, one needs to understand the latter and how the completion process
works. The structure of the ring W. NFp/ follows from [5], [45] where a canonical
isomorphism is constructed

W. NFp/ D .Wp1. NFp//
I.p/; (43)

where Wp1 is the Witt functor using the set of powers of the prime p while
I.p/ � N is the set of integers which are prime to p. Thus, by construction,
Wp1. NFp/ is the completion of the maximal unramified extension of the p-
adic integers Zp. It sits naturally as a subring ObQur

p

of the field Cp which is the

completion for the p-adic norm of an algebraic closure of Qp (cf. [44]).
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The isomorphism (43) holds for commutative Fp-algebras A. On ƒ.A/, a
central role is played by the Artin–Hasse exponential

Ep.t/ D hexp .t/ D exp
�
t C tp

p
C tp

2

p2
C � � �

�
2 ƒ.Fp/: (44)

One has (cf. [3], [45]):

Proposition 3.4. (1) Ep.t/ 2 ƒ.Fp/ is an idempotent of the ring ƒ.Fp/.
(2) The Ep.n/ D 1

n
Vn.Ep/ 2 ƒ.Fp/; n 2 I.p/, determine a partition of unity

by idempotents.
(3) For n … pN, Fn.Ep/ D 1.D 0ƒ/ and Fpk .Ep/ D Ep for all k 2 N.

Note that any n 2 I.p/ is invertible in ƒ.Fp/. This corresponds to the ex-
traction of the n-th root of the power series f D 1 C g and it is given by the
binomial formula

.1C g/
1
n D 1C 1

n
g C � � � C

1
n
.1

n
� 1/ � � � .1

n
� k C 1/

kŠ
gk C � � � : (45)

The p-adic valuation of the rational coefficient of gk is positive because 1
n

is a
p-adic integer, thus this coefficient can be approximated arbitrarily by a bino-
mial coefficient. By Proposition 3.1, (4), for n 2 I.p/, 1

n
Vn is an endomorphism

of ƒ. NFp/ and is a right inverse of Fn. One has (cf. [5], [3], [45]):

Proposition 3.5. Let A be an Fp-algebra.

(a) The following map is an isomorphism of Wp1.A/ with the reduced ring
ƒ.A/Ep

 A W Wp1.A/ �! ƒ.A/Ep
;

x D .xpn/n2N 7�! hx.t/ D
Y
N

Ep.xpn tp
n

/: (46)

(b) For n 2 I.p/, the composite  �1
A ı Fn is an isomorphism of the reduced

algebra ƒ.A/Ep.n/ with Wp1.A/.
(c) The following is a canonical isomorphism of ƒ.A/ with the Cartesian prod-

uct Wp1.A/I.p/

�A.x/n D  �1
A ı Fn.x ? Ep.n//; 8n 2 I.p/: (47)

(d) The composite isomorphism ‚A D �A ı 'A W W.A/ ! Wp1.A/I.p/ is
given explicitly on the components by

.‚A.x/n/pk D Fn.x/pk ; 8x 2 W.A/; n 2 I.p/: (48)
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We now apply these results to an algebraic closure A D NFp. We identify
Wp1.A/ with a subring of Cp (the p-adic completion of an algebraic closure

of the p-adic numbers Qp). Let bQur
p � Cp be the completion of the maximal

unramified extension Qur
p of p-adic numbers. Then Wp1. NFp/ is the completion

ObQur
p

� bQur
p of the subring generated by roots of unity. With ‚ the isomorphism

of (48), we have

‚ W W. NFp/ �! .ObQur
p

/I.p/; .‚.x/n/pk D Fn.x/pk : (49)

‚makes W. NFp/ a module over ObQur
p

. Form 2 I.p/, we let �m be the vector with

only one non-zero component: �m.m/ D 1. To the Frobenius automorphism of
NFp corresponds, by functoriality, a canonical automorphism Fr of ObQur

p

which

extends to a continuous automorphism

Fr 2 Aut .bQur
p /: (50)

We can now describe the p-adic analogues of the complex irreducible repre-
sentations �� of the BC-system of (23). Recall that Xp denotes the space of all
injective group homomorphisms � W NF�

p ! C�. The choice of � 2 Xp deter-
mines an embedding � W Qcyc;p ! Cp of the cyclotomic field generated by the
abstract roots of unity of order prime to p.

Theorem 3.6. Let � 2 Xp and � W Qcyc;p ! Cp the associated embedding.
The representation �� of Theorem 3.3 extends by continuity to a representation
of the integral BC-system HZ on W. NFp/. For n 2 I.p/, the �� .�n/ and for
x 2 ZŒQ=Z	, the �� .x/ are ObQur

p

-linear operators such that

�� .�n/�m D �nm; �� .e.a=b//�m D �.
m
a=b/�m; 8n 2 N; m; b 2 I.p/:

(51)
Moreover

�� .�p/ D Fr �1 (52)

is the inverse of the Frobenius automorphism, acting componentwise as a skew
linear operator.

Note that �� .�p/ D Fr �1 is Zp-linear but not ObQur
p

-linear. The presence of

this operator allows one to show that the representation �� is indecomposable
when viewed as a Zp-representation of the integral BC-system HZ. It is impor-
tant however to also view �� as a ObQur

p

-skew-linear representation. The natural

parameter for the representation is then the embedding

� W Qcyc;p �! Cp: (53)

We shall now investigate the analogue, in this p-adic context, of the KMS states
given in the complex case by (22).
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3.6. Partition function, p-adic L-functions and KMS at a prime p

We let p be a prime, I.p/ the set of all positive integers not divisible by p and
we take an embedding � W Qcyc;p ! Cp of the cyclotomic field generated by the
abstract roots of unity of order prime to p to the field Cp which is the completion
of an algebraic closure of Qp. We consider an expression of the form

Z
�a
b
; ˇ
�

D
X

m2I.p/

�.
m
a=b/m

�ˇ : (54)

Here b 2 I.p/ and as a function of m 2 I.p/ with values in Cp the function
�.
m

a=b
/ only depends on the residue ofmmodulo b. We let f D bp and decom-

pose the sum (54) according to the residue ˛ ofm modulo f . Since b 2 I.p/ is
prime to p one has Z=f Z D Z=pZ�Z=bZ. Only values of ˛ D .˛1; ˛2/whose
component in ˛1 2 Z=pZ is non-zero come from I.p/ and this characterizes
I.p/. For each ˛ 2 Z=pZ� � Z=bZ we let Q̨ 2 N be the smallest integer with
residue modulo f equal to ˛. We thus get

Z
�a
b
; ˇ
�

D
X

˛

�.
˛
a=b/

X
n2N

. Q̨ C f n/�ˇ : (55)

The first sum involves ˛ 2 Z=pZ� � Z=bZ and is finite. Each infinite sum is of
the form X

n2N

. Q̨ C f n/�ˇ D f �ˇ
X
n2N

.z C n/�ˇ

where z D Q̨=f has p-adic norm jzjp > 1. We are using formally the rule

.xy/ˇ D xˇyˇ : (56)

To understand how to make sense of the above expression in the p-adic case,
we recall the Euler–Maclaurin formula:

bX
kDa

f .k/ D
Z b

a

f .t/ dt C f .a/C f .b/

2

C
mX

j D2

Bj

j Š
.f .j �1/.b/ � f .j �1/.a// �Rm;

(57)

where Bj D Bj .0/, the Bj .x/ are the Bernoulli polynomials, and the remainder
Rm is expressed as

Rm D .�1/m
mŠ

Z b

a

f .m/.x/Bm.x � Œx	/ dx: (58)
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One applies this formula to the function f .x/ D .z C x/�s . One gets

1X
kD0

.z C k/�s � z1�s

�1C s

1X
0

 
1 � s
j

!
Bj z

�j : (59)

This formula gives a much better numerical approximation than the original
series (and was used by Euler to get 20 decimal places for

P
n�2 which he then

proved equal to �2=6). It is not a convergent series but an asymptotic series. In
the p-adic case we write

1X
nD0

.z C n/�ˇ WD z1�ˇ

�1C ˇ

1X
0

 
1 � ˇ
j

!
Bj z

�j

and thus

f �ˇ
1X

nD0

.z C n/�ˇ WD 1

f

Q̨1�ˇ

�1C ˇ

1X
0

 
1 � ˇ
j

!
Bj z

�j : (60)

By [53] Chapter V, Theorem 5.9, this formula defines a p-adic meromorphic
function on

DDfˇ2Cp j jˇjp < qp�1=.p�1/.> 1/g; qD4; if pD2; qDp; if p¤2:
(61)

We can now write the p-adic formula for (54)

Z
�a
b
; ˇ
�

WD 1

bp

X
1�c<bp; c…pN

�.
c
a=b/

c1�ˇ

�1C ˇ

1X
0

 
1 � ˇ
j

!� c
bp

��j
Bj :

(62)
The term c1�ˇ requires a precise definition and one first decomposes c as

c D !.c/hci (63)

where !.c/ is the Teichmüller lift of the residue of c modulo p, and where hci
is in 1CpZp . Since c is not a multiple of p, !.c/ is a .p� 1/-root of unity and
one has

hcip�1 D cp�1:

We assumed p ¤ 2. For p D 2 the torsion in Z�
2 is given by the two elements

˙1 2 Z�
2 . To know the torsion one needs to take the residue of c modulo 4 and

lift it to !.c/ D ˙1 2 Z�
2 so that c Š !.c/ modulo 4. One then uses (63) to

define hci in this case p D 2.
One now defines in general

hcis WD
1X
0

 
s

j

!
.hci � 1/j (64)
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which is convergent for s 2 D by [53] Chapter V, §1. This is also equal to
exp.s log.c// where log W C�

p ! Cp is the Iwasawa logarithm and exp the
analogue of the exponential (cf. [53]) given by the usual series which converges
in the domain

fu 2 Cp j jujp < p�1=.p�1/g: (65)

Thus the final form of the definition is

Definition 3.7. With q as in (61),

Z
�a
b
; ˇ
�

WD 1

bq

X
1�c<bq; c…pN

�.
c
a=b/

hci1�ˇ

ˇ � 1
1X
0

 
1 � ˇ
j

!�bq
c

�j
Bj : (66)

Let us first look at the normalization factor (partition function) which is

Z.ˇ/ WD 1

bq

X
1�c<bq; c…pN

hci1�ˇ

ˇ � 1
1X
0

 
1 � ˇ
j

!�bq
c

�j
Bj : (67)

The first point is that Z.ˇ/ has a pole at ˇ D 1 and the residue is given by

1

bq

X
1�c<bq; c…pN

1 D '.q/

q
D p � 1

p
:

Proposition 3.8. When ˇ ! 1 one has

Z.ˇ/�1Z
�a
b
; ˇ
�

�!
(
1; if

a

b
2 Z

0; otherwise.
(68)

Proof. Assume first that a
b

… Z. Then  D �.
a=b/ is a non-trivial root of unity,
whose order m > 1 divides b which is prime to p and hence to q. ThusX

1�c<bq; c…pN

c D '.q/
X

n2Z=bZ

n D 0

using Z=bqZ D Z=qZ � Z=bZ. For a
b

2 Z the result follows from the above
discussion. �

In particular the limit for ˇ ! 1 of the functional values Z.ˇ/�1Z.a
b
; ˇ/

is independent of the value of � (i.e., of � 2 Xp). In the classical case of the
BC-system the value for ˇ > 1 is given by (22). In that case, let us check
directly that for ˇ > 1 these functional values determine � embedding in C

of the cyclotomic field Qcyc generated by the abstract roots of unity. One lets
� 2 OZ� and one has

Lemma 3.10. Assume that � 2 OZ� is not equal to ˙1, then the graph of the
multiplication by � in Q=Z is a dense subset of R=Z � R=Z.
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Proof. The subset
G D f.˛; �˛/ j ˛ 2 Q=Zg

is a subgroup of R=Z�R=Z and so is its closure NG. IfG is not dense there exists
a non-trivial character � of the compact group R=Z�R=Z whose kernel contains
G. Thus there exists a non-zero pair .n;m/ 2 Z2 such that n˛ Cm�˛ 2 Z for
all ˛ 2 Q=Z. This implies that the multiplication by � 2 OZ� in the group
Q=Z D AQ;f = OZ fulfills

n˛ Cm�˛ 2 OZ; 8˛ 2 AQ;f :

If n=m … f˙1g there exists a prime p which divides only one of them, say pjn.
Let then k D vp.n/, one has p-adic units u and v such that

upk˛ C v�p˛ 2 Zp; 8˛ 2 Qp

which is a contradiction. Hence n=m 2 f˙1g and � 2 f˙1g. �

It follows from Lemma 3.10 that, if f W fz 2 C j jzj D 1g ! C is a
continuous non-constant function, an equality of the form

f .�1.
a=b// D f .�2.
a=b//; 8a=b 2 Q=Z (69)

implies that �2 D �1 or �2 D N�1. Moreover in the latter case one gets

f . Nz/ D f .z/; 8z; jzj D 1:

This case does not happen for the function f .z/ D P1
nD1 n

�ˇzn by uniqueness
of the Fourier decomposition.

We now return to the p-adic case and consider the values of the functions for
ˇ D 1� .p�1/k where k is a positive integer. We assume p > 2 for simplicity.
In that case one has

hci1�ˇ D ck.p�1/ (70)

from the definition of hci. Also the binomial coefficients
�
1�ˇ

j

�
all vanish for

j > k.p � 1/ and the sum (66) defining Z.a
b
; ˇ/ is finite. One has

hci1�ˇ

ˇ � 1
1X
0

 
1 � ˇ
j

!�bp
c

�j
Bj D � ck.p�1/

.p � 1/k
k.p�1/X

0

 
k.p � 1/

j

!�bp
c

�j
Bj

and for any integer m > 0

mX
0

 
m

j

!�bp
c

�j
Bj D

�bp
c

�m
Bm

� c
bp

�
:
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Thus one gets, with m D k.p � 1/; 1 � c � bp,

T .c/ D 1

bp

hci1�ˇ

ˇ � 1
1X
0

 
1 � ˇ
j

!�bp
c

�j
Bj D �.bp/

m�1

m
Bm

� c
bp

�
: (71)

One now uses [53] Chapter IV, Proposition 4.1, which gives

gn�1

g�1X
j D0

Bn

�x C j

g

�
D Bn.x/: (72)

Together with (71) this gives (with ˇ D 1 �m D 1 � k.p � 1/)
p�1X
iD0

T .c0 C ib/ D �.bp/
m�1

m

p�1X
iD0

Bm

�c0 C ib

bp

�
D �b

m�1

m
Bm

�c0

b

�
:

Next one has

Z
�a
b
; ˇ
�

D
X

1�c<bp; c…pN

T .c/�.
c
a=b/

D
X

1�c�bp

T .c/�.
c
a=b/ �

X
cDjp; 1�j �b

T .c/�.
c
a=b/

and X
1�c�bp

T .c/�.
c
a=b/ D �b

m�1

m

X
1�c�b

�.
c
a=b/Bm

�c
b

�
while X

cDjp; 1�j �b

T .c/�.
c
a=b/ D �.bp/

m�1

m

X
1�j �b

�.

pj

a=b
/Bm

�j
b

�
:

Thus one gets (with ˇ D 1 �m D 1 � k.p � 1/)

Z
�a
b
; ˇ
�

D �b
m�1

m
.1 � p�ˇ Fr /

X
1�c�b

�.
c
a=b/Bm

�c
b

�
: (73)

We thus obtain:

Theorem 3.10. For ˇ a negative odd integer of the form ˇ D 1 � m D 1 �
k.p � 1/, one has

.1 � p�ˇ Fr /�1Z
�a
b
; ˇ
�

D �b
m�1

m

X
1�c�b

�.
c
a=b/Bm

�c
b

�
2 Qcyc (74)

which is formally independent of the prime p.
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We now fix ˇ D 1 � m D 1 � k.p � 1/ and investigate the dependence
upon the choice of �, i.e., of � 2 Xp. Thus we take � and �0 and assume that
Z�.

a
b
; ˇ/ D Z�0.a

b
; ˇ/ holds for all a=b 2 �.p/, i.e., all fractions with denomi-

nator b prime to p. By (74) we then haveX
1�c�b

�.
c
a=b/Bm

�c
b

�
D

X
1�c�b

�0.
c
a=b/Bm

�c
b

�
; 8a=b 2 �.p/: (75)

Since both � and �0 are isomorphisms with the group of roots of unity in Cp

of order prime to p, there exists an automorphism � 2 Aut .�.p// such that
�0 D � ı � . One hasX

1�c�b

�0.
c
a=b/Bm

�c
b

�
D

X
1�c�b

�.
a
�.c=b//Bm

�c
b

�
D

X
1�c�b

�.
a
c=b/Bm

�
��1

�c
b

��
:

The uniqueness of the Fourier transform for the finite group Z=bZ then shows
that (75) implies the equality

Bm

�
��1

�c
b

��
D Bm

�c
b

�
; 8c=b 2 �.p/: (76)

Lemma 3.11. Let � 2 Aut .�.p//. Then if � 2 f˙1g one has

Z�

�a
b
; ˇ
�

D Z�ı�

�a
b
; ˇ
�
; 8a=b 2 �.p/; ˇ 2 D: (77)

If � … f˙1g and ˇ D 1 � m D 1 � k.p � 1/, the functionals Z�.�; ˇ/ and
Z�ı� .�; ˇ/ are distinct.

Proof. To prove (77) we can assume that � D �1, i.e., that �.
a=b/ D 
�1
a=b

for

all a=b 2 �.p/. We then have, with �0 D � ı � ,

�0.
c
a=b/ D �.
b�c

a=b /

Let first ˇ D 1 �m D 1 � k.p � 1/. One hasX
1�c�b

�0.
c
a=b/Bm

�c
b

�
D

X
0�c�b�1

�.
c
a=b/Bm

�b � c
b

�
:

Since m D k.p � 1/ is even, the Bernoulli polynomial Bm fulfills

Bm.1 � x/ D Bm.x/: (78)

Thus the equality (77) follows for all values ˇ D 1 �m D 1 � k.p � 1/. Since
these values admit 0 as an accumulation point this implies the equality of the
analytic functions on their domain D.
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Now assume that � … f˙pZg. Then by the proof of Lemma 3.10, the graph
of � is dense in R=Z�R=Z. Thus an equality (76) implies thatBm.x/ is constant
which is a contradiction. It remains to show that for non-zero powers q D pf

of p one cannot have an equality of the form

Bm.x/ D Bm.qx � Œqx	/; 8x 2 Œ0; 1	;
where Œqx	 is the integral part of qx. But this would imply thatBm.x/�Bm.qx/

has infinitely many zeros. Thus Bm.x/ D Bm.qx/ which is a contradiction. �

In fact we can now improve Theorem 3.10 and for that we first note that at
the archimedean place the extremal KMS states below critical temperature are
given by (22),

'ˇ;�.e.a=b// D 1


.ˇ/

1X
nD1

n�ˇ�.
n
a=b/:

The formula

`ˇ .z/ D
1X

nD1

n�ˇzn (79)

defines the multiple logarithm and fulfills

z@z`ˇ .z/ D `ˇ�1.z/: (80)

For ˇ D 0 the sum gives the rational fraction

`0.z/ D z

1 � z (81)

and this shows that when ˇ 2 �N is a negative integer `ˇ .z/ is a rational
fraction. Thus it makes sense over any field. We now show:

Theorem 3.12. For ˇ a negative odd integer of the form ˇ D 1 � m D 1 �
k.p � 1/, one has

.1 � p�ˇ Fr /�1Z
�a
b
; ˇ
�

D `ˇ .�.
a=b// 2 Qcyc (82)

which is formally independent of the prime p.

Proof. One lets

F.u; t/ D teut

et � 1 D
1X

nD0

Bn.u/
tn

nŠ
:

Let first z ¤ 1 be a complex number. Then for any b 2 N

b�1X
j D0

zj e
j
b

t D zbet � 1
ze

t
b � 1



24 A. Connes

so that, when zb D 1,

1X
nD0

�b�1X
j D0

zjBn

�j
b

�� tn
nŠ

D
b�1X
j D0

zjF
�j
b
; t
�

D t

ze
t
b � 1

which gives the equality

b�1X
j D0

zjBn

�j
b

�
D � n

bn�1
`1�n.z/; 8n > 1: (83)

This identity holds in Qcyc and combined with (74) gives (82). �

Since when ˇ 2 �N is a negative integer `ˇ .z/ is a rational fraction, one can
prove identities for arbitrary ˇ 2 D by checking them on these special values.

Lemma 3.13. For any m 2 N and 
m a primitive m-th root of unity, one has

1

m

m�1X
j D0

`ˇ .

j
mx/ D m�ˇ`ˇ .x

m/: (84)

Proof. This follows from (79). One can check it directly for ˇ D 0 and it is
stable under z@z so that it holds algebraically for all ˇ 2 �N. �

Using (84) one can show the analogue of the KMSˇ condition for the Cp-
valued functionals on the integral BC-system HZ such that, in particular,

'ˇ;�.e.a=b// D 1

Z.ˇ/
Z�

�a
b
; ˇ
�
: (85)

We refer the reader to [15] where the theory is fully developed using Iwasawa’s
construction of p-adic L-functions. In particular it is shown in [15] that the nat-
ural group which serves as the parameter space for the modular automorphisms
�ˇ is the open unit disk M D D.1; 1�/ in Cp with radius 1, viewed as a multi-
plicative group. It is a covering of Cp using the following group homomorphism

M D D.1; 1�/ 3 � 7�! ˇ D `.�/ D logp �

logp.1C q/
2 Cp; (86)

where logp is the Iwasawa logarithm. The Iwasawa construction of p-adic L-
functions allows one to extend the KMS theory to this parameter space [15].
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4. The mysterious curve

C. Soulé has associated a zeta function to any sufficiently regular counting-type
function N.q/, by considering the following limit


N .s/ WD lim
q!1

Z.q; q�s/.q � 1/N.1/; s 2 R: (87)

Here, Z.q; q�s/ denotes the evaluation, at T D q�s , of the Hasse–Weil zeta
function

Z.q; T / D exp
�X

r�1

N.qr/
T r

r

�
: (88)

For the formula (87) to make sense one requires that the counting functionN.q/
is defined for all real numbers q 	 1 and not only for prime integers powers
as for the counting function in (88). For many simple examples of algebraic
varieties, like the projective spaces, the function N.q/ is known to extend un-
ambiguously to all real positive numbers. The associated zeta function 
N .s/
is easy to compute and it produces the expected outcome. For a projective line,
for example, one finds 
N .s/ D 1

s.s�1/
. Another case which is easy to handle

and also carries a richer geometric structure is provided by a Chevalley group
scheme. The study of these varieties has shown that these schemes are endowed
with a basic (combinatorial) skeleton structure and, in [10], we proved that they
are varieties over F1, as defined by Soulé in [47].

4.1. The counting function of C D Spec Z

To proceed further, it is natural to wonder on the existence of a suitably defined
curve C D Spec Z over F1, whose zeta function 
C .s/ agrees with the complete
Riemann zeta function 
Q.s/ D ��s=2�.s=2/
.s/ (cf. [33] and [38]). To by-
pass the difficulty inherent to the definition (87), when N.1/ D �1, one works
with the logarithmic derivative

@s
N .s/


N .s/
D � lim

q!1
F.q; s/; (89)

where

F.q; s/ D �@s

X
r�1

N.qr/
q�rs

r
: (90)

Then one finds (cf. [11] Lemma 2.1), under suitable regularity conditions on
N.u/, that for Re.s/ large enough, one has

lim
q!1

F.q; s/ D
Z 1

1

N.u/u�s d�u; d�u D du=u (91)
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and
@s
N .s/


N .s/
D �

Z 1

1

N.u/u�s d�u: (92)

Using this integral equation (92) one obtains a precise description of the count-
ing function NC .q/ D N.q/ associated to C . One gets

@s
Q.s/


Q.s/
D �

Z 1

1

N.u/u�s d�u: (93)

and one uses the Euler product for 
Q.s/. When Re.s/ > 1, one derives

�@s
Q.s/


Q.s/
D

1X
nD1

ƒ.n/n�s C
Z 1

1

�.u/u�s d�u; (94)

whereƒ.n/ is the von Mangoldt function taking the value logp at prime powers
p` and zero otherwise. Also �.u/ is the distribution defined, for any test function
f , as Z 1

1

�.u/f .u/ d�u D
Z 1

1

u2f .u/ � f .1/
u2 � 1 d�uC cf .1/;

c D 1

2
.log� C �/;

(95)

where � D �� 0.1/ is the Euler constant. The distribution �.u/ is positive on
.1;1/ where, by construction, it is given by �.u/ D u2

u2�1
. Hence, we deduce

that the counting function N.q/ of the hypothetical curve C over F1, is the dis-
tribution defined by the sum of �.q/ and a discrete term given by the derivative
taken in the sense of distributions, of the function

'.u/ D
X
n<u

nƒ.n/: (96)

One derives the following formula for N.u/

N.u/ D d

du
'.u/C �.u/: (97)

One can then use the explicit formulas to express '.u/ in terms of the set Z of
non-trivial zeros of the Riemann zeta function. One has the formula (cf. [27],
Chapter IV, Theorems 28 and 29) valid for u > 1 (and not a prime power)

'.u/ D u2

2
�
X
�2Z

order .�/
u�C1

�C 1
C a.u/; (98)
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where the sum over Z in (98) has to be taken in a symmetric manner to ensure
the convergence, and

a.u/ D 1

2
log
�uC 1

u � 1
�

� 
0.�1/

.�1/ : (99)

By taking the principal values into account, one obtains the following more
precise result (for the proof we refer to [11], Theorem 2.2)

Theorem 4.1. The tempered distribution N.u/ satisfying the equation

�@s
Q.s/


Q.s/
D
Z 1

1

N.u/u�s d�u

is positive on .1;1/ and on Œ1;1/ is given by

N.u/ D u � d

du

�X
�2Z

order .�/
u�C1

�C 1

�
C 1; (100)

where the derivative is taken in the sense of distributions, and the value at u D 1

of the term !.u/ D P
�2Z order .�/u�C1

�C1
is given by

!.1/ D
X
�2Z

order .�/
1

�C 1
D 1

2
C �

2
C log 4�

2
� 
0.�1/

.�1/ : (101)

This result supplies a strong indication on the coherence of the quest for an
arithmetic theory over F1. For an irreducible, smooth and projective algebraic
curve X over a prime field Fp, the counting function is of the form

#X.Fq/ D N.q/ D q �
X

˛

˛r C 1; q D pr ;

where the numbers ˛’s are the complex roots of the characteristic polynomial of
the Frobenius endomorphism acting on the étale cohomologyH 1.X ˝ NFp;Q`/

of the curve (` ¤ p). By writing these roots in the form ˛ D p�, for � a zero of
the Hasse–Weil zeta function of X , the above equality reads as

#X.Fq/ D N.q/ D q �
X

�

order .�/q� C 1: (102)

The equations (100) and (102) are now completely identical, except for the fact
that in (102) the values of q are restricted to the discrete set of powers of p and
that (102) involves only a finite sum, which allows one to differentiate term by
term.
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4.2. Explicit formulas and the adèle class space

Equation (98) is a typical application of the Riemann–Weil explicit formulas.
These formulas become natural when lifted to the idèle class group. The coun-
terpart of the hypothetical curve C through the application of the class-field
theory isomorphism, can be realized by a space of adelic nature the adèle class
space HQ in agreement with the earlier constructions in [16], [18] and [17].

We start by considering the explicit formulas in the following form.

Oh.0/C Oh.1/ �
X
�2Z

order .�/ Oh.�/

D
X
p

1X
mD1

logph.pm/C
��
2

C log�

2

�
h.1/C

Z 1

1

t2h.t/ � h.1/
t2 � 1 d�t:

(103)
Here h.u/ is a function defined on Œ1;1/ and such that h.u/ D O.u�1��/, and
one sets

Oh.s/ D
Z 1

1

h.u/us d�u: (104)

We apply this formula with the function hx determined by the conditions

hx.u/ D u for u 2 Œ1; x	; hx.u/ D 0 for u > x: (105)

Then, we obtain

Ohx.s/ D
Z 1

1

hx.u/u
s�1 du D

Z x

1

uus�1 du D x1Cs

1C s
� 1

1C s
: (106)

Thus, it follows that

Ohx.1/ D x2

2
� 1

2
; Ohx.0/ D x � 1; Ohx.�/ D x1C�

1C �
� 1

1C �
: (107)

The left-hand side of the explicit formula (103) gives, up to a constant

J.x/ D x2

2
C x �

X
�2Z

order .�/
x1C�

1C �
: (108)

The first term on the right-hand side of (103) gives

'.x/ D
X
n<x

nƒ.n/ (109)

while the integral on the right-hand side of (103) givesZ 1

1

t2hx.t/ � hx.1/

t.t2 � 1/ dt D x � 1

2
log
�x C 1

x � 1
�

C constant: (110)
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Thus the explicit formula (103) is transformed into the equality

X
n<x

nƒ.n/ D x2

2
�
X
�2Z

order .�/
x1C�

1C �
C 1

2
log
�x C 1

x � 1
�

C constant: (111)

This formula is the same as (98). We refer to [27] for a precise justification of
the analytic steps. It follows that the left-hand side (108) of the explicit formula
gives a natural primitive J.x/ of the counting functionN.x/. It is thus natural to
differentiate formally the family of functions hx with respect to x and see what
the right-hand side of the explicit formula is transformed into. By construction,
one has, for u 	 1

hx.u/ D uY.u � x/;
where Y is the characteristic function of the interval .�1; 0	. The derivative of
Y.s/ is �ı.s/. Thus, at the formal level, one derives

@xhx D uı.u � x/:
The function gx.u/ corresponding to @xhx is thus gx.u/ D uıx.u/ and it is
characterized, as a distribution, by its evaluation on test functions b.x/. This
gives Z

b.u/gx.u/ d
�u D b.x/: (112)

We now show how to implement the trace formula interpretation of the explicit
formulas to describe the counting functionN.u/ as an intersection number. First
the above explicit formula is a special case of the Weil explicit formulas which
we briefly describe in the general context of global fields. One lets K be a global
field, ˛ a non-trivial character of AK=K and ˛ D Q

˛v its local factors. Let
h 2 S .CK/ have compact support. Then the Weil explicit formula is

Oh.0/C Oh.1/ �
X

�2bCK;1

X
Z Q�

Oh. Q�; �/ D
X

v

Z 0

K�
v

h.u�1/

j1 � uj d
�u; (113)

where
R 0 is normalized by ˛v and Oh.�; z/ D R

h.u/�.u/jujz d�u. This formula
becomes a trace formula whose geometric side is of the form

Tr distr

�Z
h.u/#.u/ d�u

�
D
X

v

Z 0

K�
v

h.u�1/

j1 � uj d
�u: (114)

Here #.u/.x/ D .u�1x/ is the scaling action of the idèle class group CK

on the adèle class space HK D AK=K
�. We refer to [8], [40] and [19] for the

detailed treatment. The subgroups K�
v � CK appear as isotropy groups. One
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can understand why the terms h.u�1/
j1�uj occur in the trace formula by computing

formally as follows the trace of the scaling operator T D �.u�1/

T .x/ D .ux/ D
Z
k.x; y/.y/ dy;

given by the distribution kernel k.x; y/ D ı.ux � y/,

Tr distr.T / D
Z
k.x; x/ dxD

Z
ı.ux � x/ dxD 1

ju � 1j
Z
ı.z/ dzD 1

ju � 1j :

We apply (114) by taking K D Q and the function h of the form h.u/ D g.juj/
where the support of the function g is contained in .1;1/. On the left-hand
side of (114) one first performs the integration in the kernel CQ;1 of the module
CQ ! R�C. At the geometric level, this corresponds to taking the quotient of
M by the action of CQ;1. We denote by #u the scaling action on this quotient.
By construction this action only depends upon juj 2 R�C. The equality (112)
means that when we consider the distributional trace of an expression of the
form

R
gx.u/#u d

�u we are in fact just taking the distributional trace of #x

since Z
gx.u/#u d

�u D #x; (115)

thus we are simply considering an intersection number. We now look at the
right-hand side of (114), i.e., at the termsZ 0

K�
v

h.u�1/

j1 � uj d
�u: (116)

Since h.u/ D g.juj/ and the support of the function g is contained in .1;1/,
one sees that the integral (116) can be restricted in all cases to the unit ball
fuI juj < 1g of the local field Kv . In particular, for the finite places one has
j1 � uj D 1, thus for each finite prime p 2 Z one hasZ 0

Q�
p

h.u�1/

j1 � uj d
�u D

1X
mD1

logp g.pm/: (117)

At the archimedean place one has instead

1

2

� 1

1 � 1
u

C 1

1C 1
u

�
D u2

u2 � 1:

The above equation is applied for u > 1, in which case one can write equiva-
lently

1

2

� 1

j1 � u�1j C 1

j1C u�1j
�

D u2

u2 � 1: (118)

Thus, the term corresponding to (116) yields the distribution �.u/ of (95).
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4.3. Algebraic structure of the adèle class space

In [8], as well as in subsequent papers, the adèle class space AK=K
� of a global

field K has been studied as a noncommutative space. Only very recently (cf.
[13]), we have been successful to associate an algebraic structure to AK=K

�
using which this space finally reveals its deeper nature of a hyperring of func-
tions. The hyperring structure of AK=K

� has emerged gradually by combining
the following two properties:

– AK=K
� is a commutative monoid, so that one may apply to this space the

geometry of monoids of K. Kato [28] and A. Deitmar [21].

The natural monoid structure on the adèle class space, when combined with
one of the simplest examples of monoidal schemes, i.e., the projective line P1

F1
,

provides a geometric framework to better understand conceptually the spectral
realization of the zeros of L-functions of [8], [40] and [19]. It appears as the
cohomology of a natural sheaf � of functions on the set of rational points of
the monoidal scheme P1

F1
on the monoid M D AK=K

� of adèle classes. The
sheaf � is a sheaf of complex vector spaces over the geometric realization of
the functor associated to the projective line. It is a striking fact that despite the
apparent simplicity of the construction of P1

F1
the computation of H 0.P1

F1
; �/,

already yields the graph of the Fourier transform. The cohomologyH 0.P1
F1
; �/

is given, up to a finite dimensional space, by the graph of the Fourier trans-
form acting on the co-invariants for the action of K� on the Bruhat–Schwartz
space S .AK/. Moreover, the spectrum of the natural action of the idèle class
group CK on the cohomology H 1.P1

F1
; �/ provides the spectral realization of

the zeros of Hecke L-functions.

– AK=K
� is a hyperring over the Krasner hyperfield K D f0; 1g.

In [13], we proved that the adèle class space possesses a rich additive struc-
ture which provides the correct arithmetic setup on this space. It is an interesting
coincidence that the first summary on hyperring theory, due to M. Krasner (cf.
[31]), was presented in the same conference and appeared in the same proceed-
ing volume together with the seminal paper of J. Tits [50] where he introduced
“le corps de caractéristique un”. The distinction between the algebraic structure
that Tits proposed as the degenerate case of Fq for q D 1, i.e., “le corps formé
du seul élément 1 D 0”, and the Krasner hyperfield K D f0; 1g is simply that
in K one keeps the distinction 1 ¤ 0, while recording the degeneracy by allow-
ing the sum 1C 1 to be maximally ambiguous. Thus the algebraic rules of the
hyperfield K D f0; 1g correspond to the property of being zero or non-zero in
the same way as the algebraic rules of the field F2 correspond to the properties
of being even or odd for relative integers. We have shown in [13], that the adèle
class space HK over an arbitrary global field K is a hyperring extension of K.
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In general, as shown by Krasner, one obtains a hyperring by taking the quotient
A=G of a ring A by a subgroup G � A� of the group of units. We have shown
that A=G is an extension of K if and only if G [ f0g is a subfield of A which is
exactly what happens for the adèle class space AK=K

� and allows one to use the
Poisson summation formula. Moreover, when K has positive characteristic, i.e.,
is a function field over a curveX , we construct in [13] a canonical identification
of the groupoid of prime elements of the hyperring HK with the loop groupoid
of the abelian cover of X associated to the maximal abelian extension of the
function field K. The nuance between the loop groupoid and the abelian cover
amounts to the choice of a base point in the fiber over each place of K and this
nuance is essential in algebraic geometry.

4.4. First hints towards the “curve” for the global field Q

In the case of number fields, the groupoid of prime elements of the hyperring HK

still makes sense and the issue is to construct, in characteristic zero, a geometric
model similar to the curve and its abelian cover in the function field case. Let K

be a function field, i.e., a global field of characteristic p > 1 and let Fq � K be
the field of constants. The abelian cover of the curve is obtained by the following
steps (cf. [24]):

(1) One considers the maximal abelian extension Kab  K of K.
(2) One considers inside Kab the finite extensions E  NFp ˝Fq

K of NFp ˝Fq
K.

(3) For each such extension E the space of (discrete) valuations is turned into
a scheme with non-empty open sets given by complements of finite subsets
and structure sheaf given by the intersection of the valuation rings inside E.

Let us now turn to the global field K D Q. One can first try to ignore step
(2) and consider the maximal abelian extension of Q, i.e., the cyclotomic field
Qcyc which we view as an abstract field obtained as the quotient of the group
ring QŒQ=Z	 by the ideal generated by the en D 1

n

P
n�D0 e.�/ for n > 1. One

can then consider directly, for each finite prime p, the space Valp.Qcyc/, of val-
uations on Qcyc extending the p-adic valuation of Q. This space Valp.Qcyc/ is
canonically isomorphic to the quotient †p of the space Xp (of (40)) of isomor-
phisms � W NF�

p ! �.p/, by the action of the Galois group Gal . NFp W Fp/ acting
by composition on the right

� 7�! � ı ˛ W NF�
p �! �.p/; 8˛ 2 Gal . NFp W Fp/; � 2 Xp: (119)

One can describe †p concretely by looking at the corresponding addition on
Q�.p/ D f0g [ �.p/ which is inherited from the given isomorphism with NFp.
It suffices to specify the addition with 1 and this shows that †p is the set of
bijections s of Q�.p/ D f0g [ �.p/ which commute with all their conjugates
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under rotations by elements of �.p/, and fulfill s.0/ D 1; s ı s ı � � � ı s D id
with p factors.

But the comparison with the adèle class space shows that the space †p is
not what one wants as a fiber over p and one expects a finer space, which is the
mapping torus Yp of the action of the Frobenius on Xp. More concretely Yp is
the quotient

Yp D .Xp � .0; 1//=�Z (120)

of the product Xp � .0; 1/ of Xp by the open interval .0; 1/ � R by � where

�.�; �/ D .� ı Fr ; �p/; 8� 2 Xp; � 2 .0; 1/: (121)

It follows from the isomorphism Gal . NFp W Fp/ � OZ, with the Frobenius Fr
as topological generator, that the finer space Yp is the total space of a principal
bundle over †p with structure group the connected compact solenoid

Sp D . OZ � R/=Z; (122)

where the subgroup Z is generated by the element .1; logp/ 2 OZ � R.
In [54], A. Weil showed how to construct the Weil group which compensates,

at the Galois level, the absence of the connected component of identity in the
idèle class group. We face here a similar problem at the level of the “curve”.
One should then perform the gluing of the fibers Yp for different primes since
as explained in the introduction, one needs to embed all these fibers in the same
noncommutative space to account for the transversality factors in the explicit
formulas.

In [17], following a proposal of Soulé for F1n ˝F1
Z, we noted that

F11 ˝F1
Z D ZŒQ=Z	 (123)

is the abelian part of the BC-system. What matters is that, with the description
given in [17] of the BC-system as an endomotive E , one can consider its points
over any ring A and this is just

E .A/ D Hom .ZŒQ=Z	; A/: (124)

Now, replacing � 2 Xp by the associated homomorphism � of Theorem 3.6 one
can describe equivalently the space Xp as

Xp D Hom .Qcyc;p;bQur
p / D Hom .Qcyc;p;Cp/: (125)

One obtains in this way, for each p the canonical inclusions

Xp � Hom .ZŒQ=Z	;bQur
p / D E .bQur

p / � Hom .ZŒQ=Z	;Cp/ D E .Cp/: (126)
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By comparison with the adèle class space HQ, one finds that the natural non-
commutative space in which the above fiber Yp embeds naturally is the quotient

.E .Cp/ � .0;1//=.Z n f0g/; (127)

where Z n f0g is viewed as a multiplicative semi-group and the action of ˙n 2
Z n f0g is the product of the action of the n-th Frobenius of the endomotive by
the map x 7! xn in .0;1/. One uses the sign ˙1 to act on the endomotive by
the complex conjugation on roots of unity.

In order to match together these spaces for different primes, it then becomes
necessary to uniformize the embedding of Qcyc in Cp for different primes. It is at
this point that appears the need for a canonical construction of NFp as developed
in [35].

We were careful in [17] to distinguish F11 from the unknown NF1 and the
extension

NF1 ˝F1
Q  F11 ˝F1

Q D QŒQ=Z	 (128)

remains elusive. It could well involve the “dual system” of the BC-system. We
shall explain in the final section of this paper why the analogue of the Witt
construction in characteristic 1 provides a possible interpretation (see (151)) of
the role of the interval .0;1/ in (127) and of the corresponding action of N.

5. Characteristic one and the Witt construction

Besides the above unveiling of the algebraic structure of the adèle class space,
the quest for an analogue of algebraic geometry in “characteristic one” has
strong relations with tropical geometry and idempotent analysis [29], [37].

We shall explain in this section the results of [9], which show that there is
an analogue of the Witt construction Wp1 in characteristic one. When this con-
struction is applied to the semi-field RmaxC of idempotent analysis [29], [37], as
defined by (139) below, it gives in that case the inverse operation of the “de-
quantization”.

5.1. Wp1 revisited

Our starting point is a formula which goes back to Teichmüller and which gives
an explicit expression for the sum of the multiplicative lifts in the context of
strict p-rings. A ringR is a strict p-ring whenR is complete and Hausdorff with
respect to the p-adic topology, p is not a zero-divisor in R, and the residue ring
K D R=pR is perfect. The ring R is uniquely determined byK up to canonical
isomorphism and there exists a unique multiplicative section � W K ! R of the
residue morphism � W R ! K D R=pR

� W K �! R; � ı � D id; �.xy/ D �.x/�.y/; 8x; y 2 K: (129)
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Every element x of R can be written uniquely in the form

x D
X

�.xn/p
n; xn 2 K (130)

which gives a canonical bijection Q� W KŒŒT 		 ! R such that

Q�
�X

xnT
n
�

D
X

�.xn/p
n: (131)

Let then
Ip D f˛ 2 Q \ Œ0; 1	; 9n; pn˛ 2 Zg: (132)

The formula which goes back to Teichmüller [49] allows one to express the sum
of two (or more) multiplicative lifts in the form

Theorem 5.1. There exists a map wp W Ip ! FpŒŒT 		 such that for all x; y 2 K
one has

�.x/C �.y/ D Q�
�X

˛2Ip

wp.˛; T /x
˛y1�˛

�
: (133)

In this equation the sum inside the parenthesis in the right-hand side takes
place in KŒŒT 		, and, since K is perfect, the terms x˛y1�˛ make sense. Finally
the terms

wp.˛; T / 2 FpŒŒT 		; 8˛ 2 Ip (134)

only depend on the prime p and tend to zero at infinity in FpŒŒT 		, for the dis-
crete topology in Ip, so that the sum (133) is convergent. The formula (133)
easily extends to express the sum of n multiplicative lifts asX

�.xj / D Q�
� X

j̨ 2Ip;
P

j̨ D1

wp.˛1; : : : ; ˛n; T /
Y

x j̨

j

�
: (135)

As is well known the algebraic structure of R was functorially reconstructed
from that ofK by Witt who showed that the algebraic rules in R are polynomial
in terms of the components Xn

x D
X

�.Xp�n

n /pn; Xn D xpn

n (136)

which makes sense since K is perfect. One can in fact, as already noted by
Teichmüller in [49], also reconstruct the full algebraic structure of R as a de-
formation ofK depending upon the parameter T using the above formula (135)
but the corresponding algebraic relations are not so simple to handle, mostly
because the map x ! x˛ from K to K is an automorphism only when ˛ is a
power of p. As we shall now explain, this difficulty disappears in the limit case
of characteristic one.
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5.2. Perfect semi-rings of characteristic 1

We refer to [22] for the general theory of semi-rings. In a semi-ring R the addi-
tive structure .R;C/ is no longer that of an abelian group but is a commutative
monoid with neutral element 0. The multiplicative structure .R; �/ is a monoid
with identity 1 ¤ 0 and distributivity holds while r �0 D 0 � r D 0 for all r 2 R.

Definition 5.2. A semi-ring R is said to have characteristic 1 when

1C 1 D 1 (137)

in R.

A semi-ring R is called a semi-field when every non-zero element in R has
a multiplicative inverse. We let B D f0; 1g be the only finite semi-field which is
not a field. One has 1C 1 D 1 in B ([22], [36]). By definition, a semi-ring R is
multiplicatively cancellative when

x ¤ 0; xy D xz H) y D z: (138)

We recall, from [22] Propositions 4.43 and 4.44 the following result which de-
scribes the analogue of the Frobenius endomorphism in characteristic p.

Proposition 5.3. Let R be a multiplicatively cancellative semi-ring of charac-
teristic one. Then the map #n.x/ D xn is an injective endomorphism of R for
any n 2 N.

We shall say that A is perfect when #n is surjective for all n. One then gets
a one parameter group of automorphisms #	 2 Aut .A/, � 2 Q�C such that

� #n.x/ D xn for all n 2 N and x 2 A.
� #	 ı #
 D #	
 for �;� 2 Q�C.
� #	.x/#
.x/ D #	C
.x/ for �;� 2 Q�C and x 2 A:

We denote #	.x/ D x	. Of course B is perfect, another important example
is RmaxC , i.e., the set Œ0;1/ with ordinary multiplication and the new addition
given by

x C0 y WD max.x; y/; 8x; y 2 RC: (139)

To obtain the analogue of the Witt construction for multiplicatively cancellative
perfect semi-ring of characteristic one, one looks for functions w.˛/ defined
for ˛ 2 I D Q \ Œ0; 1	 which make the following operation commutative and
associative

x Cw y D
X
˛2I

w.˛/x˛y1�˛: (140)

Besides the symmetry
w.1 � ˛/ D w.˛/; (141)
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one obtains the functional equation

w.˛/w.ˇ/˛ D w.˛ˇ/w.�/.1�˛ˇ/; � D ˛.1 � ˇ/
1 � ˛ˇ : (142)

The general solution of this equation is given by

Proposition 5.4. Let G be a uniquely divisible abelian group and w W I ! G,
with w.0/ D w.1/ D 1 2 G. Then w fulfills (141) and (142), if and only if there
exists a homomorphism � W Q�C ! G such that

w.˛/ D �.˛/˛�.1 � ˛/1�˛; 8˛ 2 .0; 1/ \ Q: (143)

This homomorphism � is determined by the �.p/ 2 G for all primes p.

5.3. Entropy and the W.R; �/

We let, as above, R be a multiplicatively cancellative perfect semi-ring of char-
acteristic one. The uniquely divisible group G D R� is a vector space over Q

using the action �˛.x/ D x˛ and is partially ordered by the relation x C y D y

noted x � y. We shall now make the stronger assumption that it is a partially
ordered vector space over R. Thus G is a partially ordered group endowed with
a one parameter group of automorphisms �	 2 Aut .G/; � 2 R� such that, with
�0.x/ D 1 for all x by convention,

�		0 D �	 ı �	0 ; �	.x/�	0.x/ D �	C	0.x/: (144)

We assume the following compatibility (closedness) of the partial order with the
vector space structure

�n �! �; �	n
.x/ 	 y H) �	.x/ 	 y: (145)

Theorem 5.5. Let w W I ! G fulfill (141) and (142) and

w.˛/ 	 1; 8˛ 2 I: (146)

Then there exists � 2 G; � 	 1 such that

w.˛/ D �S.˛/; S.˛/ D �˛ log.˛/ � .1 � ˛/ log.1 � ˛/; 8˛ 2 I: (147)

In the above framework of multiplicatively cancellative perfect semi-rings
of characteristic we associate to � 2 A; � 	 1, a metric d.x; y/ such that

d.x; y/ D inff˛ j x � y�˛; y � x�˛g: (148)

It is finite on the intervals Œ��n; �n	. We let A� be the union of f0g with the
separated completions of the intervals Œ��n; �n	.
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Theorem 5.6. Let � 2 A; � > 1 be invertible. Then the formula

x C� y WD
X

˛2Œ0;1�\Q

�S.˛/x˛y1�˛; 8x; y 2 A�

defines an associative commutative composition law on A� with 0 as neutral
element. Multiplication is distributive and the Grothendieck group of the monoid
.A�;C�/ is a normed algebra W.A; �/ over R depending functorially upon
.A; �/.

It follows from Gelfand’s theory that the characters of the complex Banach
algebra W .R; �/C form a non-empty compact space

X D Spec .W .R; �/C/ ¤ ;: (149)

5.4. The w.˛; T / and Run

In the case of the Witt construction, the functoriality allows one to apply the
functor Wp1 to an algebraic closure NFp of Fp which yields the following dia-
gram

NFp

Wp17�! Wp1. NFp/ D ObQur
p

[ [
Fp

Wp17�! Zp D Wp1.Fp/:

(150)

In our case, the analogue of the extension Fp � NFp is the extension of semi-rings
B � RmaxC and the one-parameter group of automorphisms �	 2 Aut .RmaxC /,
�	.x/ D x	, plays the role of the Frobenius. But since our construction of
W.RmaxC ; �/ depends upon the choice of �, one first needs to eliminate the choice
of � by considering simultaneously all possible choices. To do this we introduce
a parameter T 	 0,

� D eT 2 RmaxC ; � 	 1: (151)

With this notation, w.˛/ depends on T as the wp.˛; T / of (134) of the Witt
case, one has explicitly

w.˛; T / D ˛�T ˛.1 � ˛/�T .1�˛/: (152)

The presence in w.˛; T / of the parameter T 	 0 implies that even if one adds
terms which are independent of T the result will depend on T . Thus one works
with functions f .T / 2 RmaxC with the usual pointwise product and the new
addition

.f1 Cw f2/.T / D
X
˛2 NI

w.˛; T /f1.T /
˛f2.T /

1�˛: (153)
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Proposition 5.7. The addition (153) is given by

.f1 Cw f2/.T / D .f1.T /
1=T C f2.T /

1=T /T (154)

for T > 0 and for T D 0 by

.f1 Cw f2/.0/ D sup.f1.0/; f2.0//: (155)

Thus, the sum of n terms xj independent of T is given by

x1 Cw � � � Cw xn D
�X

x
1=T
j

�T
: (156)

In particular one can compute the sum of n terms all equal to 1 which will
necessarily be fixed under any automorphism of the obtained structure. One
gets

1Cw 1Cw � � � Cw 1 D nT : (157)

This suggests more generally that the functions of the form

f .T / D xT ; 8T 	 0

will be fixed by the lift of the �	 2 Aut .RmaxC /. We now review the analogy
with the Witt case. The constant functions T 7! x are the analogue of the
Teichmüller representatives

�.x/.T / D x; 8T: (158)

One has

�.x/C �.y/ D
X
˛2 NI

w.˛; T /x˛y1�˛; (159)

where the sum in the right-hand side is computed in RmaxC . The evaluation at
T D 0 is by construction a morphism

� W f 7�! f .0/ 2 RmaxC : (160)

We view this morphism as the analogue of the canonical map which exists for
any strict p-ring

�p W Wp1.K/ �! K D Wp1.K/=pWp1.K/: (161)

One has a natural one parameter group of automorphisms ˛	 of our structure,
which corresponds to the �	 2 Aut .RmaxC /. It is given by
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Proposition 5.8. The following defines a one parameter group of automorphi-
sms

˛	.f /.T / D f .T=�/	; 8� 2 R�C: (162)

One has

� ı ˛	 D �	 ı �; ˛	 ı � D � ı �	; 8�: (163)

The fixed points of ˛	 are of the form

f .T / D aT (164)

and they form the semi-field RC which is the positive part of the field R of real
numbers, endowed with the ordinary addition and multiplication.

For each T > 0 Proposition 5.7 shows that the algebraic operations on the
value f .T / are the same as in the semi-field RC using the character �T which
is such that

�T .f / D f .T /1=T : (165)

We can thus use the characters �T to represent the elements of the extension Run

as functions of T with the ordinary operations of pointwise sum and product.

Proposition 5.9. The following map � is a homomorphism of semi-rings to the
algebra of functions from .0;1/ to RC with pointwise sum and product,

�.f /.T / D f .T /1=T ; 8T > 0: (166)

One has

�.�.x//.T / D x1=T ; 8T > 0 (167)

and

�.˛	.f //.T / D �.f /.T=�/; 8T > 0: (168)

These properties are straightforward consequences of (165).
In this representation �, the residue morphism is given, under suitable con-

tinuity assumptions by

�.f / D lim
T !0

�.f /.T /T : (169)

The algebraic operations are very simple and this suggests to represent elements
of Run as functions �.f /.T /. Among them one should have the fixed points
(164) which give �.f / D a and the Teichmüller lifts which give (167). We
parameterize the latter in the form

e�.T / D e��=T ; 8T > 0: (170)
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Table 1.

Characteristic p Characteristic 1

Fp B D SC
NFp RmaxC D T RC

Wp1.A/ W.R; �/

�.x/C �.y/ x Cw y

D Q�.P˛2Ip
wp.˛/x

˛y1�˛/ D P
˛2 NI w.˛/x˛y1�˛

Teichmüller lift x 7�! �.x/ �.�.x//.T / D x1=T ; 8T > 0
�p W Wp1. NFp/ �! NFp �.f / D limT !0 �.f /.T /

T

Frobenius automorphism �.˛	.f //.T / D �.f /.T=�/

Qp � cQur
p R � Run

Fixed points D Qp Fixed points D R

After symmetrization and passing to the field of quotients, the fixed points (164)
and the Teichmüller lifts (158) generate the field of fractions of the form (in the
� representation)

�.f /.T / D
�X

aj e
��j =T

�.�X
bj e

�j =T
�
; (171)

where the coefficients aj ; bj are real numbers and the exponents j ; �j 2 R.
It is quite remarkable that, independently of our work [13] on hyperfields,

O. Viro introduced in [52] the hyperfield T R of tropical reals for the needs of
tropical geometry. The hyperfield T R is R with ordinary multiplication and the
following hyperaddition of real numbers:

a ^ b D
(
a; if jaj > jbj or a D b;
b; if jaj < jbj or a D b;
[�a; a]; if b D �a.

(172)

It is always useful, when at all possible, to present a hyperfield as the quotient
of an ordinary field by a subgroup of its multiplicative group. Thus it comes as
a pleasant fact that the hyperfield T R of tropical reals is indeed the following
quotient

Theorem 5.10. Let E be the field of rational fractions of the form

h.T / D
�X

aj e
��j =T

�.�X
bj e

�j =T
�
; (173)

where all aj ; bj ; j ; �j are real numbers. Then

G D fh 2 E j 9a > 0; h.T / �! a for T �! 0g (174)
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is a multiplicative subgroup of E and the quotient E=G is canonically isomor-
phic to the hyperfield T R.

The corresponding homomorphism Q� W E ! T R is given by Q�.0/ D 0 and
for a reduced fraction, i.e., no repetition in the j or �j , of the form (173), by

Q�.f / D sign
� aj0

bk0

�
e��j0

Ck0 ; j0
D inf

j
.j /; �k0

D inf
k
.�k/: (175)

While the field E gives a first hint towards Run one should not be sat-
isfied yet since natural examples coming from quantum physics use expres-
sions of the same type but involving more elaborate sums. In all these exam-
ples, including those coming from the functional integral, it turns out that not
only limT !0 �.f /.T /

T exists as in (169) but in fact the function f .T / D
�.f /.T /T admits an asymptotic expansion for T ! 0 of the form

f .T / D �.f /.T /T �
X

anT
n: (176)

For functions of the form (171), this expansion only uses the terms with the
lowest values of j and �j and is thus only a crude information on the element
f . But as soon as one uses integrals instead of finite sums in (171) one obtains
general asymptotic expansions (176). We refer to [9] for more details and for
the relation between T and „. This suggests more generally to use the theory
of divergent series (cf. [43]) in the construction of Run. The simple reason for
“series” and not just numbers is that the action of R�C given by the ˛	 of (162),
gives a grading which admits the fn; �.fn/.T / D T n as eigenvectors. Thus we
end these notes by urging the patient reader who followed us up to this point, to
ponder about the very notion of number in the light of

� The power of asymptotic series (such as (59) which Euler used for
P
n�2)

which also make sense p-adically, while being ubiquitous in quantum field
theory computations.

� The unknown extension (128) in relation with Run.
� The operator formalism of the quantized calculus (cf. [7]) where asymptotic

expansions of the form (59) play a crucial role through the pseudo differen-
tial calculus.
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